Spatial structures and localization of vacuum entanglement in the linear harmonic chain

被引:112
作者
Botero, A
Reznik, B
机构
[1] Univ Los Andes, Dept Fis, Bogota, Colombia
[2] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 05期
基金
以色列科学基金会;
关键词
D O I
10.1103/PhysRevA.70.052329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the structure of vacuum entanglement for two complimentary segments of a linear harmonic chain, applying the modewise decomposition of entangled Gaussian states discussed by Boteno and Reznik [Phys. Rev. A 67, 052311 (2003)]. We find that the resulting entangled mode-shape hierarchy shows a distinctive layered structure with well-defined relations between the depth of the modes, their characteristic wavelength, and their entanglement contribution. We rederive in the strong coupling (diverging correlation length) regime, the logarithmic dependence of entanglement on the segment size predicted by conformal field theory for the boson universality class and discuss its relation with the mode structure. We conjecture that the persistence of vacuum entanglement between arbitrarily separated finite-size regions is connected with the localization of the highest-frequency innermost modes.
引用
收藏
页码:052329 / 1
页数:21
相关论文
共 37 条
  • [1] Entanglement properties of the harmonic chain
    Audenaert, K
    Eisert, J
    Plenio, MB
    Werner, RR
    [J]. PHYSICAL REVIEW A, 2002, 66 (04): : 14
  • [2] QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES
    BOMBELLI, L
    KOUL, RK
    LEE, J
    SORKIN, RD
    [J]. PHYSICAL REVIEW D, 1986, 34 (02): : 373 - 383
  • [3] BCS-like modewise entanglement of fermion Gaussian states
    Botero, A
    Reznik, B
    [J]. PHYSICS LETTERS A, 2004, 331 (1-2) : 39 - 44
  • [4] Modewise entanglement of Gaussian states
    Botero, A
    Reznik, B
    [J]. PHYSICAL REVIEW A, 2003, 67 (05): : 5
  • [5] BOTERO A, UNPUB
  • [6] ON GEOMETRIC ENTROPY
    CALLAN, C
    WILCZEK, F
    [J]. PHYSICS LETTERS B, 1994, 333 (1-2) : 55 - 61
  • [7] Density-matrix spectra for two-dimensional quantum systems
    Chung, MC
    Peschel, I
    [J]. PHYSICAL REVIEW B, 2000, 62 (07): : 4191 - 4193
  • [8] REMARKS ON GEOMETRIC ENTROPY
    DOWKER, JS
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (04) : L55 - L60
  • [9] INTRODUCTION TO THE BASICS OF ENTANGLEMENT THEORY IN CONTINUOUS-VARIABLE SYSTEMS
    Eisert, J.
    Plenio, M. B.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) : 479 - 506
  • [10] Giedke G, 2003, QUANTUM INF COMPUT, V3, P211