Finite sample properties of maximum likelihood estimator in spatial models

被引:40
|
作者
Bao, Yong
Ullah, Aman [1 ]
机构
[1] Univ Calif Riverside, Dept Econ, Riverside, CA 92521 USA
[2] Univ Texas, Dept Econ, San Antonio, TX 78249 USA
关键词
bias; mean squared error; spatial autoregressive model;
D O I
10.1016/j.jeconom.2005.08.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
We investigate the finite sample properties of the maximum likelihood estimator for the spatial autoregressive model. A stochastic expansion of the score function is used to develop the second-rder bias and mean squared error of the maximum likelihood estimator. We show that the results can be expressed in terms of the expectations of cross products of quadratic forms, or ratios of quadratic forms in a normal vector which can be evaluated using the top order invariant polynomial. Our numerical calculations demonstrate that the second-order behaviors of the maximum likelihood estimator depend on the degree of sparseness of the weights matrix. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 413
页数:18
相关论文
共 50 条