The potential of artificial intelligence-based applications in kidney pathology

被引:11
作者
Buellow, Roman D. [2 ]
Marsh, Jon N. [1 ]
Swamidass, S. Joshua [1 ]
Gaut, Joseph P. [1 ]
Boor, Peter [2 ,3 ,4 ]
机构
[1] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA
[2] RWTH Aachen Univ Hosp, Inst Pathol, Aachen, Germany
[3] RWTH Aachen Univ Hosp, Dept Nephrol & Immunol, Aachen, Germany
[4] RWTH Aachen Univ Hosp, Electron Microscopy Facil, Aachen, Germany
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
computer-assisted diagnostics; deep learning; kidney transplantation;
D O I
10.1097/MNH.0000000000000784
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review The field of pathology is currently undergoing a significant transformation from traditional glass slides to a digital format dependent on whole slide imaging. Transitioning from glass to digital has opened the field to development and application of image analysis technology, commonly deep learning methods (artificial intelligence [AI]) to assist pathologists with tissue examination. Nephropathology is poised to leverage this technology to improve precision, accuracy, and efficiency in clinical practice. Recent findings Through a multidisciplinary approach, nephropathologists, and computer scientists have made significant recent advances in developing AI technology to identify histological structures within whole slide images (segmentation), quantification of histologic structures, prediction of clinical outcomes, and classifying disease. Virtual staining of tissue and automation of electron microscopy imaging are emerging applications with particular significance for nephropathology. AI applied to image analysis in nephropathology has potential to transform the field by improving diagnostic accuracy and reproducibility, efficiency, and prognostic power. Reimbursement, demonstration of clinical utility, and seamless workflow integration are essential to widespread adoption.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 36 条
[1]   Development and Validation of a Deep Learning Model to Quantify Interstitial Fibrosis and Tubular Atrophy From Kidney Ultrasonography Images [J].
Athavale, Ambarish M. ;
Hart, Peter D. ;
Itteera, Mathew ;
Cimbaluk, David ;
Patel, Tushar ;
Alabkaa, Anas ;
Arruda, Jose ;
Singh, Ashok ;
Rosenberg, Avi ;
Kulkarni, Hemant .
JAMA NETWORK OPEN, 2021, 4 (05) :E2111176
[2]   Digital pathology and computational image analysis in nephropathology [J].
Barisoni, Laura ;
Lafata, Kyle J. ;
Hewitt, Stephen M. ;
Madabhushi, Anant ;
Balis, Ulysses G. J. .
NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) :669-685
[3]   Digital pathology and artificial intelligence in translational medicine and clinical practice [J].
Baxi, Vipul ;
Edwards, Robin ;
Montalto, Michael ;
Saha, Saurabh .
MODERN PATHOLOGY, 2022, 35 (01) :23-32
[4]   Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology [J].
Bouteldja, Nassim ;
Klinkhammer, Barbara M. ;
Buelow, Roman D. ;
Droste, Patrick ;
Otten, Simon W. ;
Freifrau von Stillfried, Saskia ;
Moellmann, Julia ;
Sheehan, Susan M. ;
Korstanje, Ron ;
Menzel, Sylvia ;
Bankhead, Peter ;
Mietsch, Matthias ;
Drummer, Charis ;
Lehrke, Michael ;
Kramann, Rafael ;
Floege, Juergen ;
Boor, Peter ;
Merhof, Dorit .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (01) :52-68
[5]  
Browning L, 2021, J CLIN PATHOL, V74, P443, DOI [10.1136/jclinpath-2020-206854, 10.1136/jclinpath-2020-206786]
[6]   How will artificial intelligence and bioinformatics change our understanding of IgA in the next decade? [J].
Buelow, Roman David ;
Dimitrov, Daniel ;
Boor, Peter ;
Saez-Rodriguez, Julio .
SEMINARS IN IMMUNOPATHOLOGY, 2021, 43 (05) :739-752
[7]   Deep learning-based transformation of H&E stained tissues into special stains [J].
de Haan, Kevin ;
Zhang, Yijie ;
Zuckerman, Jonathan E. ;
Liu, Tairan ;
Sisk, Anthony E. ;
Diaz, Miguel F. P. ;
Jen, Kuang-Yu ;
Nobori, Alexander ;
Liou, Sofia ;
Zhang, Sarah ;
Riahi, Rana ;
Rivenson, Yair ;
Wallace, W. Dean ;
Ozcan, Aydogan .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues [J].
Gallego, Jaime ;
Swiderska-Chadaj, Zaneta ;
Markiewicz, Tomasz ;
Yamashita, Michifumi ;
Gabaldon, M. Alejandra ;
Gertych, Arkadiusz .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 89
[9]   Automated Computational Detection of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis [J].
Ginley, Brandon ;
Jen, Kuang-Yu ;
Han, Seung Seok ;
Rodrigues, Lus ;
Jain, Sanjay ;
Fogo, Agnes B. ;
Zuckerman, Jonathan ;
Walavalkar, Vighnesh ;
Miecznikowski, Jeffrey C. ;
Wen, Yumeng ;
Yen, Felicia ;
Yun, Donghwan ;
Moon, Kyung Chul ;
Rosenberg, Avi ;
Parikh, Chirag ;
Sarder, Pinaki .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (04) :837-850
[10]   PodoSighter: A Cloud-Based Tool for Label-Free Podocyte Detection in Kidney Whole-Slide Images [J].
Govind, Darshana ;
Becker, Jan U. ;
Miecznikowski, Jeffrey ;
Rosenberg, Avi Z. ;
Dang, Julien ;
Tharaux, Pierre Louis ;
Yacoub, Rabi ;
Thaiss, Friedrich ;
Hoyer, Peter F. ;
Manthey, David ;
Lutnick, Brendon ;
Worral, Amber M. ;
Mohammad, Imtiaz ;
Walavalkar, Vighnesh ;
Tomaszewski, John E. ;
Jen, Kuang-Yu ;
Sarder, Pinaki .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (11) :2795-2813