THE FACTORIZED SPARSE APPROXIMATE INVERSE PRECONDITIONED CONJUGATE GRADIENT ALGORITHM FOR FINITE ELEMENT ANALYSIS OF SCATTERING PROBLEMS

被引:16
作者
Ping, X. W. [1 ]
Cui, T. J. [1 ]
机构
[1] Southeast Univ, Inst Target Characterist & Identificat, State Key Lab Millimeter Waves, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
ELECTROMAGNETIC SCATTERING; LINEAR-SYSTEMS; VECTOR; FORMULATION; EDGE;
D O I
10.2528/PIER09071703
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The edge-based finite element method is used for the solution of scattering problems. The factorized sparse inverse preconditioner is considered for the conjugate gradient iterative solution of the large sparse linear systems generated from the finite element method. The efficiency of the proposed preconditioner is illustrated on a set of model problems in the final of the paper. The results suggest that the sparse inverse preconditioner is very efficient for the solution of large-scale electromagnetic scattering problems.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 31 条
[1]  
Ali M., 2008, Progress In Electromagnetics Research B, V2, P291, DOI 10.2528/PIERB07112901
[2]   A MIXED FINITE-ELEMENT FORMULATION FOR MICROWAVE DEVICES PROBLEMS - APPLICATION TO MIS STRUCTURE [J].
AUBOURG, M ;
GUILLON, P .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1991, 5 (4-5) :371-386
[3]   ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :499-523
[4]   A comparative study of sparse approximate inverse preconditioners [J].
Benzi, M ;
Tuma, M .
APPLIED NUMERICAL MATHEMATICS, 1999, 30 (2-3) :305-340
[6]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994
[7]   Fast iterative solution methods in electromagnetic scattering [J].
Carpentieri, B. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2008, 79 :151-178
[8]   Application of diagonally perturbed incomplete factorization preconditioned conjugate gradient algorithms for edge finite-element analysis of Helmholtz equations [J].
Chen, RS ;
Ping, XW ;
Yung, EKN ;
Chan, CH ;
Nie, Z ;
Hu, J .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (05) :1604-1608
[9]  
Chen Y., 2009, Progress In Electromagnetics Research B, V15, P95, DOI 10.2528/PIERB09042002
[10]  
DyczijEdlinger R, 1996, IEEE T MICROW THEORY, V44, P15, DOI 10.1109/22.481380