A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation

被引:19
作者
Tubini, Niccolo [1 ]
Gruber, Stephan [2 ]
Rigon, Riccardo [1 ,3 ]
机构
[1] Univ Trento, Dept Civil Environm & Mech Engn, Trento, Italy
[2] Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON K1S 5B6, Canada
[3] Univ Trento, Ctr Agr Food Environm, Trento, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
LAND-SURFACE MODEL; SNOW-COVER; NUMERICAL-SOLUTION; WATER-FLOW; ITERATIVE SOLUTION; RICHARDS EQUATION; GROUNDWATER-FLOW; CLIMATE-CHANGE; SHEET MODEL; FROZEN SOIL;
D O I
10.5194/tc-15-2541-2021
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The accurate simulation of heat transfer with phase change is a central problem in cryosphere studies. This is because the non-linear behaviour of enthalpy as function of temperature can prevent thermal models of snow, ice, and frozen soil from converging to the correct solution. Existing numerical techniques rely on increased temporal resolution in trying to keep corresponding errors within acceptable bounds. Here, we propose an algorithm, originally applied to solve water flow in soils, as a method to solve these integration issues with guaranteed convergence and conservation of energy for any time step size. We review common modelling approaches, focusing on the fixed-grid method and on frozen soil. Based on this, we develop a conservative formulation of the governing equation and outline problems of alternative formulations in discretized form. Then, we apply the nested Newton-Casulli-Zanolli (NCZ) algorithm to a one-dimensional finite-volume discretization of the energy-enthalpy formulation. Model performance is demonstrated against the Neumann and Lunardini analytical solutions and by comparing results from numerical experiments with integration time steps of 1 h, 1 d, and 10 d. Using our formulation and the NCZ algorithm, the convergence of the solver is guaranteed for any time step size. With this approach, the integration time step can be chosen to match the timescale of the processes investigated.
引用
收藏
页码:2541 / 2568
页数:28
相关论文
共 109 条
[11]   A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model [J].
Bartelt, P ;
Lehning, M .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2002, 35 (03) :123-145
[12]  
Boone A, 2001, J HYDROMETEOROL, V2, P374, DOI 10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO
[13]  
2
[14]  
Bouyoucos G., 1915, MICH AGR EXP STA TEC, V24
[15]  
Bouyoucos G. J, 1913, TECHNICAL B MICHIGAN, V17, P1
[16]  
Bouyoucos GJ., 1920, MON WEATHER REV, V48, P718, DOI [10.1175/1520-0493(1920)482.0.CO
[17]  
2, DOI 10.1175/1520-0493(1920)482.0.CO
[18]  
2]
[19]  
Bouyuocos G.J., 1923, J AGR RES, V24, P427
[20]   ITERATIVE SOLUTION OF PIECEWISE LINEAR SYSTEMS [J].
Brugnano, Luigi ;
Casulli, Vincenzo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (01) :463-472