The concentration of soluble aluminium (Al) in the soil solution increases at low pH and the prevalence of toxic Al(3+) cations represent the main factor limiting plant growth on acid soils. Citrate secretion from roots is an important Al-tolerance mechanism in many species including soybean. We isolated mitochondria from the roots of an Al-resistant soybean (Glycine max L.) cv. Jiyu 70 to investigate the relationship between citrate metabolism and Al-induced citrate secretion. Spectrophotometric assays revealed that the activities of mitochondrial malate dehydrogenase and citrate synthase increased and aconitase decreased with increasing of Al concentration (0-50 mu M) and duration of Al treatment (30 mu M Al, 0.5-9 h). Al-induced citrate secretion was inhibited by the citrate synthase inhibitor suramin, and enhanced by the aconitase inhibitor fluorocitric acid. Mersalyl acid, an inhibitor of a citrate carrier located in mitochondria membrane, also suppressed Al-induced citrate secretion. Transcript level of the mitochondrial citrate synthase gene increased in soybean roots exposed to Al, whereas expression of aconitase showed no significant difference. Expression of Gm-AlCT, a gene showing homology to Al-activated citrate transporters was also induced after 4 h in Al treatment. The Al-dependent changes in activity and expression of these enzymes are consistent with them supporting the sustained release of citrate from soybean roots.