Smoothed model checking for uncertain Continuous-Time Markov Chains

被引:39
作者
Bortolussi, Luca [1 ,2 ,3 ]
Milios, Dimitrios [4 ]
Sanguinetti, Guido [4 ,5 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ Saarland, Modelling & Simulat Grp, D-66123 Saarbrucken, Germany
[3] CNR ISTI, Pisa, Italy
[4] Univ Edinburgh, Sch Informat, Edinburgh EH8 9YL, Midlothian, Scotland
[5] Univ Edinburgh, SynthSys, Ctr Synthet & Syst Biol, Edinburgh EH8 9YL, Midlothian, Scotland
关键词
Model checking; Uncertainty; Continuous-Time Markov Chains; Gaussian Processes; PARAMETER SYNTHESIS; SIMULATION; BEHAVIOR;
D O I
10.1016/j.ic.2016.01.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of computing the satisfaction probability of a formula for stochastic models with parametric uncertainty. We show that this satisfaction probability is a smooth function of the model parameters under mild conditions. This enables us to devise a novel Bayesian statistical algorithm which performs model checking simultaneously for all values of the model parameters from observations of truth values of the formula over individual runs of the model at isolated parameter values. This is achieved by exploiting the smoothness of the satisfaction function: by modelling explicitly correlations through a prior distribution over a space of smooth functions (a Gaussian Process), we can condition on observations at individual parameter values to construct an analytical approximation of the function itself. Extensive experiments on non-trivial case studies show that the approach is accurate and considerably faster than naive parameter exploration with standard statistical model checking methods. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 43 条
  • [1] Andersson H., 2012, STOCHASTIC EPIDEMIC, V151
  • [2] Approximate maximum likelihood estimation for stochastic chemical kinetics
    Andreychenko, Aleksandr
    Mikeev, Linar
    Spieler, David
    Wolf, Verena
    [J]. EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2012, 2012 (01)
  • [3] [Anonymous], 2012, PROBABILITY MEASURE
  • [4] Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes
    Baier, C
    Hermanns, H
    Katoen, JP
    Haverkort, BR
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 345 (01) : 2 - 26
  • [5] Bartocci Ezio, 2014, Formal Modeling and Analysis of Timed Systems. 12th International Conference, FORMATS 2014. Proceedings. LNCS: 8711, P23, DOI 10.1007/978-3-319-10512-3_3
  • [6] System design of stochastic models using robustness of temporal properties
    Bartocci, Ezio
    Bortolussi, Luca
    Nenzi, Laura
    Sanguinetti, Guido
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 587 : 3 - 25
  • [7] Bartocci E, 2011, LECT NOTES COMPUT SC, V6605, P326, DOI 10.1007/978-3-642-19835-9_30
  • [8] Benedikt M, 2013, LECT NOTES COMPUT SC, V7795, P32, DOI 10.1007/978-3-642-36742-7_3
  • [9] Bortolussi Luca, 2013, Quantitative Evaluation of Systems. 10th International Conference, QEST 2013. Proceedings: LNCS 8054, P89, DOI 10.1007/978-3-642-40196-1_7
  • [10] U-Check: Model Checking and Parameter Synthesis Under Uncertainty
    Bortolussi, Luca
    Milios, Dimitrios
    Sanguinetti, Guido
    [J]. QUANTITATIVE EVALUATION OF SYSTEMS, 2015, 9259 : 89 - 104