Singularities of linear systems and boundedness of Fano varieties

被引:76
作者
Birkar, Caucher [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge, England
关键词
Fano varieties; bounded families; linear systems; log canonical thresholds; minimal model program; JORDAN PROPERTY;
D O I
10.4007/annals.2021.193.2.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study log canonical thresholds (also called global log canonical threshold or alpha-invariant) of R-linear systems. We prove existence of positive lower bounds in different settings, in particular, proving a conjecture of Ambro. We then show that the Borisov-Alexeev-Borisov conjecture holds; that is, given a natural number d and a positive real number epsilon, the set of Fano varieties of dimension d with epsilon-log canonical singularities forms a bounded family. This implies that birational automorphism groups of rationally connected varieties are Jordan which, in particular, answers a question of Serre. Next we show that if the log canonical threshold of the anti-canonical system of a Fano variety is at most one, then it is computed by some divisor, answering a question of Tian in this case.
引用
收藏
页码:347 / 405
页数:59
相关论文
共 43 条
  • [31] Nadel A. M., 1991, J AM MATH SOC, V4, P681, DOI 10.2307/2939285
  • [32] Nikulin V. V, 1990, IZV AKAD NAUK SSSR M, V53, P657, DOI [10.1070/IM1990v035n03ABEH000721, DOI 10.1070/IM1990V035N03ABEH000721]
  • [33] Nikulin V. V, 1989, IZV AKAD NAUK SSSR M, V52, P355, DOI [10.1070/IM1989v033n02ABEH000836, DOI 10.1070/IM1989V033N02ABEH000836]
  • [34] DELPEZZO SURFACES WITH LOG-TERMINAL SINGULARITIES .1.
    NIKULIN, VV
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1990, 66 (01): : 231 - 248
  • [35] Prokhorov YG, 2000, ALGEBRA, P301
  • [36] Prokhorov YG., 2001, Izv. Ross. Akad. Nauk Ser. Mat, V65, P99, DOI [DOI 10.1070/IM2001V065N06ABEH000366, 10.1070/IM2001v065n06ABEH000366.T4]
  • [37] TOWARDS THE SECOND MAIN THEOREM ON COMPLEMENTS
    Prokhorov, Yu. G.
    Shokurov, V. V.
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (01) : 151 - 199
  • [38] JORDAN PROPERTY FOR CREMONA GROUPS
    Prokhorov, Yuri
    Shramov, Constantin
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2016, 138 (02) : 403 - 418
  • [39] Jordan property for groups of birational selfmaps
    Prokhorov, Yuri
    Shramov, Constantin
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (12) : 2054 - 2072
  • [40] Serre JP, 2009, MOSC MATH J, V9, P193