On invariant analysis of space-time fractional nonlinear systems of partial differential equations. II

被引:26
作者
Singla, Komal [1 ]
Gupta, R. K. [1 ,2 ]
机构
[1] Thapar Univ, Sch Math, Patiala 147004, Punjab, India
[2] Cent Univ Punjab, Ctr Math & Stat, Bathinda 151001, Punjab, India
关键词
D O I
10.1063/1.4982804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In Paper I [Singla, K. and Gupta, R. K., J. Math. Phys. 57, 101504 (2016)], Lie symmetry method is developed for time fractional systems of partial differential equations. In this article, the Lie symmetry approach is proposed for space-time fractional systems of partial differential equations and applied to study some well-known physically significant space-time fractional nonlinear systems successfully. Published by AIP
引用
收藏
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 1998, Fract. Calc. Appl. Anal
[2]   The Time-Fractional Coupled-Korteweg-de-Vries Equations [J].
Atangana, Abdon ;
Secer, Aydin .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[3]   On solutions of two coupled fractional time derivative Hirota equations [J].
Bakkyaraj, T. ;
Sahadevan, R. .
NONLINEAR DYNAMICS, 2014, 77 (04) :1309-1322
[4]  
Bluman GW., 2002, Symmetry and integration methods for differential equations
[5]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[6]   Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives [J].
Chen, Yong ;
An, Hong-Li .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) :87-95
[7]   Exact solutions of nonlinear partial fractional differential equations using fractional sub-equation method [J].
Gepreel, K. A. ;
Al-Thobaiti, A. A. .
INDIAN JOURNAL OF PHYSICS, 2014, 88 (03) :293-300
[8]   The fractional coupled KdV equations: Exact solutions and white noise functional approach [J].
Ghany, Hossam A. ;
El Bab, A. S. Okb ;
Zabel, A. M. ;
Hyder, Abd-Allah .
CHINESE PHYSICS B, 2013, 22 (08)
[9]   Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative [J].
Huang, Qing ;
Zhdanov, Renat .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 :110-118
[10]   FracSym: Automated symbolic computation of Lie symmetries of fractional differential equations [J].
Jefferson, G. F. ;
Carminati, J. .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (01) :430-441