Achieving ultrahigh corrosion resistance and conductive zirconium oxynitride coating on metal bipolar plates by plasma enhanced atomic layer deposition

被引:45
作者
Wang, Xian-Zong [1 ]
Muneshwar, Triratna P. [1 ]
Fan, Hong-Qiang [2 ]
Cadien, Ken [1 ]
Luo, Jing-Li [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[2] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Zirconium oxynitride; Conductive coating; Corrosion resistance; Metal bipolar plates; Atomic layer deposition; BARRIER;
D O I
10.1016/j.jpowsour.2018.07.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Susceptibility to corrosion of metal bipolar plates limits their application in polymer electrolyte membrane fuel cells (PEMFCs) and hence, the development of a conductive coating with high corrosion resistance is essential. Zirconium nitride (ZrN) exhibits high corrosion resistance but the interfacial contact resistance (ICR) after the long-term test is not satisfied owing to the surface oxidation and the corrosion products. To further improve the corrosion resistance and retain a considerable electrical conductivity, herein, we present a novel zirconium oxynitride (Zr2N2O) coating on 304 stainless steel by incorporating a controlled amount of oxygen into ZrN with plasma enhanced atomic layer deposition. The corrosion current density of the Zr2N2O coated specimen is found to be over one order of magnitude lower than that of the ZrN coated substrate. More importantly, after the long-term test, the ICR of Zr2N2O coated specimen is much smaller than that of ZrN coated specimen owing to the improved oxidation resistance and decreased corrosion rate, suggesting incorporating a controlled amount of oxygen into conductive coating is a feasible strategy to achieve an ultrahigh corrosion resistance while retaining a considerable electrical conductivity.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 15 条
[1]   Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells [J].
Alishahi, M. ;
Mahboubi, F. ;
Khoie, S. M. Mousavi ;
Aparicio, M. ;
Huebner, R. ;
Soldera, F. ;
Gago, R. .
JOURNAL OF POWER SOURCES, 2016, 322 :1-9
[2]   Zirconium Oxynitride-Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes [J].
Chisaka, Mitsuharu ;
Ishihara, Akimitsu ;
Morioka, Hiroyuki ;
Nagai, Takaaki ;
Yin, Shihong ;
Ohgi, Yoshiro ;
Matsuzawa, Koichi ;
Mitsushima, Shigenori ;
Ota, Ken-ichiro .
ACS OMEGA, 2017, 2 (02) :678-684
[3]   Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding [J].
Cubillos, G. I. ;
Bethencourt, M. ;
Olaya, J. J. .
APPLIED SURFACE SCIENCE, 2015, 327 :288-295
[4]   Zirconium-based compounds for cathode of polymer electrolyte fuel cell [J].
Doi, Shotaro ;
Ishihara, Akimitsu ;
Mitsushima, Shigenori ;
Kamiya, Nobuyuki ;
Ota, Ken-ichiro .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) :B362-B369
[5]   Thin-Film Barrier Performance of Zirconium Oxide Using the Low-Temperature Atomic Layer Deposition Method [J].
Duan, Yu ;
Sun, Fengbo ;
Yang, Yongqiang ;
Chen, Ping ;
Yang, Dan ;
Duan, Yahui ;
Wang, Xiao .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (06) :3799-3804
[6]   Anion exchange membrane fuel cells: Current status and remaining challenges [J].
Gottesfeld, Shimshon ;
Dekel, Dario R. ;
Page, Miles ;
Bae, Chulsung ;
Yan, Yushan ;
Zelenay, Piotr ;
Kim, Yu Seung .
JOURNAL OF POWER SOURCES, 2018, 375 :170-184
[7]   Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes [J].
Kandidayeni, M. ;
Macias, A. ;
Amamou, A. A. ;
Boulon, L. ;
Kelouwani, S. ;
Chaoui, H. .
JOURNAL OF POWER SOURCES, 2018, 380 :92-104
[8]   Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) [J].
Lee, Dongyoung ;
Lee, Dai Gil .
JOURNAL OF POWER SOURCES, 2016, 327 :119-126
[9]   Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells [J].
Mani, S. Pugal ;
Rajendran, N. .
ENERGY, 2017, 133 :1050-1062
[10]   Low temperature plasma enhanced atomic layer deposition of conducting zirconium nitride films using tetrakis (dimethylamido) zirconium and forming gas (5% H2+95% N2) plasma [J].
Muneshwar, Triratna ;
Cadien, Ken .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (03)