Nonreciprocal guided waves in the presence of swift electron beams

被引:8
作者
Fallah, Asma [1 ]
Kiasat, Yasaman [1 ,4 ]
Silveirinha, Mario G. [2 ,3 ]
Engheta, Nader [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Univ Lisbon, Inst Super Tecn, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[3] Univ Lisbon, Inst Telecomunicacoes, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[4] 210 Locust St,16E, Philadelphia, PA 19106 USA
基金
美国国家科学基金会;
关键词
NON-RECIPROCITY; OPTICAL ISOLATION;
D O I
10.1103/PhysRevB.103.214303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Breaking the reciprocity of electromagnetic interactions is of paramount importance in photonic and microwave technologies, as it enables unidirectional power flows and other unique electromagnetic phenomena. Here we explore a method to break the reciprocity of electromagnetic guided waves utilizing an electron beam with a constant velocity. By introducing an effective dynamic conductivity for the beam, we theoretically demonstrate how nonreciprocal guided waves and a one-way propagating regime can be achieved through the interaction of swift electrons with electromagnetic waves in two-dimensional (2D) parallel-plate and three-dimensional (3D) circular-cylindrical waveguides. Unlike the conventional electron beam structures such as traveling wave tubes and electron accelerators, here the goal is neither to generate and/or amplify the wave nor to accelerate electrons. Instead, we study the salient features of nonreciprocity and unidirectionality of guided waves in such structures. The relevant electromagnetic properties such as the modal dispersion, the field distributions, the operating frequency range, and the nonreciprocity strength and its dependence on the electron velocity and number density are presented and discussed. Moreover, we compare the dispersion characteristics of waves in such structures with some electric-current-based scenarios in materials reported earlier. This broadband tunable magnet-free method offers a unique opportunity to have a switchable strong nonreciprocal response in optoelectronics, nanophotonics, and THz systems.
引用
收藏
页数:8
相关论文
共 62 条
[1]  
[Anonymous], 2001, PERMANENT MAGNET ELE
[2]  
[Anonymous], 1945, THEORY SOUND
[3]   Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence [J].
Barnard, Edward S. ;
Coenen, Toon ;
Vesseur, Ernst Jan R. ;
Polman, Albert ;
Brongersma, Mark L. .
NANO LETTERS, 2011, 11 (10) :4265-4269
[4]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[5]   Electric-current-induced unidirectional propagation of surface plasmon-polaritons [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Bekshaev, A. Y. ;
Kivshar, Y. S. ;
Nori, F. .
OPTICS LETTERS, 2018, 43 (05) :963-966
[6]  
Borgnia D. S., ARXIV151209044
[7]   THEORY OF SURFACE MAGNETOPLASMONS IN SEMICONDUCTORS [J].
BRION, JJ ;
BURSTEIN, E ;
WALLIS, RF ;
HARTSTEI.A .
PHYSICAL REVIEW LETTERS, 1972, 28 (22) :1455-&
[8]  
Button K., 1956, Antennas and Propagation, IRE Transactions on, V4, P531, DOI DOI 10.1109/TAP.1956.1144435
[9]   Electromagnetic Nonreciprocity [J].
Caloz, Christophe ;
Alu, Andrea ;
Tretyakov, Sergei ;
Sounas, Dimitrios ;
Achouri, Karim ;
Deck-Leger, Zoe-Lise .
PHYSICAL REVIEW APPLIED, 2018, 10 (04)
[10]  
Collin R. E., 2007, Foundations for Microwave Engineering