ON CHAINS OF CLASSICAL PRIME SUBMODULES AND DIMENSION THEORY OF MODULES

被引:0
作者
Behboodi, M. [1 ,2 ]
Shojaee, S. H. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Classical prime submodule; classical Krull dimension; classical prime dimension; KRULL DIMENSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study the notion of "classical prime dimension" of modules as a new generalization of the notion of "classical Krull dimension" of commutative rings to modules over arbitrary rings.
引用
收藏
页码:149 / 166
页数:18
相关论文
共 18 条
[1]   A generalization of the classical Krull dimension for modules [J].
Behboodi, M. .
JOURNAL OF ALGEBRA, 2006, 305 (02) :1128-1148
[2]   On weakly prime radical of modules and semi-compatible modules [J].
Behboodi, M. .
ACTA MATHEMATICA HUNGARICA, 2006, 113 (03) :243-254
[3]  
Behboodi M., 2004, Vietnam J. Math, V32, P185
[4]  
Behboodi M., 2004, VIETNAM J MATH, V32, P303
[5]  
Behboodi M., 2004, THESIS CHAMRAN U AHV
[6]  
Behboodi M., 2009, INT J ALGEBRA, V3, P287
[7]   A generalization of baer's lower nilradical for modules [J].
Behboodi, Mahmood .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (02) :337-353
[8]  
DAUNS J, 1978, J REINE ANGEW MATH, V298, P156
[9]  
Goodearl K. R., 2004, LONDON MATH SOC STUD, V16