Two-dimensional massive integrable models on a torus

被引:2
作者
Kostov, Ivan [1 ,2 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CNRS, F-91191 Gif Sur Yvette, France
[2] CEA, F-91191 Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
Bethe Ansatz; Integrable Field Theories; Thermal Field Theory; ELASTIC-SCATTERING THEORIES; THERMODYNAMIC BETHE-ANSATZ; FIELD-THEORIES; S-MATRIX; GORDON MODEL; GAS; FORMULATION;
D O I
10.1007/JHEP09(2022)119
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The finite-volume thermodynamics of a massive integrable QFT is described in terms of a grand canonical ensemble of loops immersed in a torus and interacting through scattering factors associated with their intersections. The path integral of the loops is evaluated explicitly after decoupling the pairwise interactions by a Hubbard-Stratonovich transformation. The HS fields are holomorphic fields depending on the rapidity and can be expanded in elementary oscillators. The torus partition function is expressed as certain expectation value in the Fock space of these oscillators. In the limit where one of the periods of the torus becomes asymptotically large, the effective field theory becomes mean field type. The mean field describes the infinite-volume thermodynamics which is solved by the Thermodynamical Bethe Ansatz.
引用
收藏
页数:37
相关论文
共 46 条
[21]   FREE FIELD PRESENTATION OF THE AN COSET MODELS ON THE TORUS [J].
KOSTOV, IK .
NUCLEAR PHYSICS B, 1988, 300 (04) :559-587
[22]   Effective Quantum Field Theory for the Thermodynamical Bethe Ansatz [J].
Kostov, Ivan .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
[23]   Boundary TBA, trees and loops [J].
Kostov, Ivan ;
Serban, Didina ;
Dinh-Long Vu .
NUCLEAR PHYSICS B, 2019, 949
[24]   Statistics of the two-dimensional ferromagnet Part I [J].
Kramers, HA ;
Wannier, GH .
PHYSICAL REVIEW, 1941, 60 (03) :252-262
[25]   Finite temperature correlation functions in integrable QFT [J].
LeClair, A ;
Mussardo, G .
NUCLEAR PHYSICS B, 1999, 552 (03) :624-642
[26]   Finite temperature expectation values of local fields in the sinh-Gordon model [J].
Lukyanov, S .
NUCLEAR PHYSICS B, 2001, 612 (03) :391-412
[27]   PARTITION-FUNCTION OF A FINITE ISING-MODEL ON A TORUS [J].
MORITA, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18) :L1191-L1196
[28]   Bosonic-type S-matrix, vacuum instability and CDD ambiguities [J].
Mussardo, G ;
Simon, P .
NUCLEAR PHYSICS B, 2000, 578 (03) :527-551
[29]  
Mussardo Giuseppe, 2020, Oxford Graduate Texts
[30]   On one-point functions for sinh-Gordon model at finite temperature [J].
Negro, S. ;
Smirnov, F. .
NUCLEAR PHYSICS B, 2013, 875 (01) :166-185