Polyvinylcarbazole as an Efficient Interfacial Modifier for Low-Cost Perovskite Solar Cells with CuInS2/Carbon Hole-Collecting Electrode

被引:19
作者
Ghavaminia, Ehsan [1 ,2 ]
Behrouznejad, Fatemeh [1 ,3 ]
Forouzandeh, Mozhdeh [1 ]
Khosroshahi, Rouhollah [1 ,4 ]
Darbari, Sara [2 ]
Zhan, Yiqiang [3 ]
Taghavinia, Nima [1 ,4 ]
机构
[1] Sharif Univ Technol, Dept Phys, Nanoparticles & Coatings Lab, Tehran 14588, Iran
[2] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran 14115194, Iran
[3] Fudan Univ, Ctr Micronano Syst, SIST, Shanghai 200433, Peoples R China
[4] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 14588, Iran
关键词
carbon electrodes; charge carrier recombination; charge-transfer resistance; copper indium disulfide; hole transport materials; perovskite solar cells; polyvinylcarbazole; STABILITY; CONDUCTOR; TRANSPORT; CUSCN;
D O I
10.1002/solr.202100074
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Different polymers have been already introduced for passivating the interfacial defects at the interface of perovskite and the organic hole transport material, meanwhile as an environmental barrier in perovskite solar cells (PSCs). Herein, polyvinylcarbazole (PVK) compared to polymethylmethacrylate (PMMA) at the interface of the perovskite (Cs-0.05(MA(0.83)FA(0.17))(0.95)Pb(Br0.17I0.83)(3)) layer and CuInS2/carbon as a low-cost inorganic hole-collecting electrode are investigated. By suppressing interfacial recombination using PMMA and PVK, saturation current density (in dark current) decreases one order of magnitude from 7.9 x 10(-10) to 4.0 x 10(-11) mA cm(-2) by adding PMMA and two orders of magnitude to 9.4 x 10(-12) mA cm(-2) by adding PVK. By decreasing charge-transfer resistance (measured by impedance spectroscopy), fill factor is increased (from 0.61) to 0.62 and 0.69, respectively. The efficiency of PSC with PVK/CuInS2/carbon hole-collecting electrode is 17.69% that is significantly higher and more reproducible than that of PMMA/CuInS2/carbon and CuInS2/carbon hole-collecting electrodes. It seems these interfacial layers also act as a barrier against penetration of carbon black and CuInS2 nanoparticles through the perovskite holes and have the functionality of a binder layer to improve the interfacial area.
引用
收藏
页数:8
相关论文
共 44 条
  • [1] Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
    Arora, Neha
    Dar, M. Ibrahim
    Hinderhofer, Alexander
    Pellet, Norman
    Schreiber, Frank
    Zakeeruddin, Shaik Mohammed
    Graetzel, Michael
    [J]. SCIENCE, 2017, 358 (6364) : 768 - 771
  • [2] A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells
    Behrouznejad, F.
    Shahbazi, S.
    Taghavinia, N.
    Wu, Hui-Ping
    Diau, Eric Wei-Guang
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) : 13488 - 13498
  • [3] Effective Carbon Composite Electrode for Low-Cost Perovskite Solar Cell with Inorganic CuIn0.75Ga0.25S2 Hole Transport Material
    Behrouznejad, Fatemeh
    Forouzandeh, Mozhdeh
    Khosroshahi, Rouhollah
    Meraji, Kazem
    Badrabadi, Moosa Nakhaee
    Dehghani, Mehdi
    Li, Xiaoguo
    Zhan, Yiqiang
    Liao, Yuan
    Ning, Zhijun
    Taghavinia, Nima
    [J]. SOLAR RRL, 2020, 4 (05):
  • [4] Interfacial Investigation on Printable Carbon-Based Mesoscopic Perovskite Solar Cells with NiOx/C Back Electrode
    Behrouznejad, Fatemeh
    Tsai, Cheng-Min
    Narra, Sudhakar
    Diau, Eric W. -G.
    Taghavinia, Nima
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (30) : 25204 - 25215
  • [5] Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/ carbon architecture
    Cao, Kun
    Zuo, Zhixiang
    Cui, Jin
    Shen, Yan
    Moehl, Thomas
    Zakeeruddin, Shaik M.
    Graezel, Michael
    Wang, Mingkui
    [J]. NANO ENERGY, 2015, 17 : 171 - 179
  • [6] On the Origin of the Ideality Factor in Perovskite Solar Cells
    Caprioglio, Pietro
    Wolff, Christian M.
    Sandberg, Oskar J.
    Armin, Ardalan
    Rech, Bernd
    Albrecht, Steve
    Neher, Dieter
    Stolterfoht, Martin
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (27)
  • [7] Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact
    Chavhan, Sudam
    Miguel, Oscar
    Grande, Hans-Jurgen
    Gonzalez-Pedro, Victoria
    Sanchez, Rafael S.
    Barea, Eva M.
    Mora-Sero, Ivan
    Tena-Zaera, Ramon
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) : 12754 - 12760
  • [8] Imperfections and their passivation in halide perovskite solar cells
    Chen, Bo
    Rudd, Peter N.
    Yang, Shuang
    Yuan, Yongbo
    Huang, Jinsong
    [J]. CHEMICAL SOCIETY REVIEWS, 2019, 48 (14) : 3842 - 3867
  • [9] An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide
    Christians, Jeffrey A.
    Fung, Raymond C. M.
    Kamat, Prashant V.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) : 758 - 764
  • [10] Room-temperature fabrication of a delafossite CuCrO2 hole transport layer for perovskite solar cells
    Dunlap-Shohl, Wiley A.
    Daunis, Trey B.
    Wang, Xiaoming
    Wang, Jian
    Zhang, Boya
    Barrera, Diego
    Yan, Yanfa
    Hsu, Julia W. P.
    Mitzi, David B.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (02) : 469 - 477