Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

被引:4
作者
Imperato, C. M. [1 ]
Ranepura, G. A. [1 ]
Deych, L. I. [1 ,2 ]
Kuskovsky, I. L. [1 ,2 ]
机构
[1] CUNY Queens Coll, Dept Phys, 65-30 Kissena Blvd, Queens, NY 11367 USA
[2] CUNY, Phys Program, Grad Ctr, 365 5th Ave, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
Intermediate band solar cells; type-II quantum dots; ZnCdSe; ZnCdTe; self-consistent variational method; interfacial layer; OPTICAL-PROPERTIES; EFFICIENCY; ENERGY; STRAIN; WELLS; FILMS; CDSE;
D O I
10.1007/s11664-018-6241-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.
引用
收藏
页码:4325 / 4331
页数:7
相关论文
共 48 条
[31]   The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept [J].
Luque, Antonio ;
Marti, Antonio .
ADVANCED MATERIALS, 2010, 22 (02) :160-174
[32]   Production of photocurrent due to intermediate-to-conduction-band transitions:: A demonstration of a key operating principle of the intermediate-band solar cell [J].
Marti, A. ;
Antolin, E. ;
Stanley, C. R. ;
Farmer, C. D. ;
Lopez, N. ;
Diaz, P. ;
Canovas, E. ;
Linares, P. G. ;
Luque, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (24)
[33]   Partial filling of a quantum dot intermediate band for solar cells [J].
Martí, A ;
Cuadra, L ;
Luque, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (10) :2394-2399
[34]   Structural phase change and optical band gap bowing in hot wall deposited CdSexTe1-x thin films [J].
Muthukumarasamy, N. ;
Jayakumar, S. ;
Kannan, M. D. ;
Balasundaraprabhu, R. .
SOLAR ENERGY, 2009, 83 (04) :522-526
[35]   Self-consistent approach for calculations of exciton binding energy in quantum wells [J].
Ponomarev, I ;
Deych, LI ;
Shuvayev, VA ;
Lisyansky, AA .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 25 (04) :539-553
[36]   Magneto-optical study of the exciton fine structure in self-assembled CdSe quantum dots [J].
Puls, J ;
Rabe, M ;
Wünsche, HJ ;
Henneberger, F .
PHYSICAL REVIEW B, 1999, 60 (24) :16303-16306
[37]   GaAs quantum dot solar cell under concentrated radiation [J].
Sablon, K. ;
Li, Y. ;
Vagidov, N. ;
Mitin, V. ;
Little, J. W. ;
Hier, H. ;
Sergeev, A. .
APPLIED PHYSICS LETTERS, 2015, 107 (07)
[38]   Conversion of above- and below-bandgap photons via InAs quantum dot media embedded into GaAs solar cell [J].
Sablon, K. ;
Little, J. ;
Vagidov, N. ;
Li, Y. ;
Mitin, V. ;
Sergeev, A. .
APPLIED PHYSICS LETTERS, 2014, 104 (25)
[39]   Strong Enhancement of Solar Cell Efficiency Due to Quantum Dots with Built-In Charge [J].
Sablon, Kimberly A. ;
Little, John W. ;
Mitin, Vladimir ;
Sergeev, Andrei ;
Vagidov, Nizami ;
Reinhardt, Kitt .
NANO LETTERS, 2011, 11 (06) :2311-2317
[40]   OPTICAL-PROPERTIES OF ZNTE [J].
SATO, K ;
ADACHI, S .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (02) :926-931