POISSON-NERNST-PLANCK MODELS FOR THREE ION SPECIES: MONOTONIC PROFILES VS. OSCILLATORY PROFILES

被引:4
|
作者
Yan, Long [1 ]
Xu, Hongguo [2 ]
Liu, Weishi [2 ]
机构
[1] Northeast Elect Power Univ, Sch Sci, Jilin 132012, Jilin, Peoples R China
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
关键词
Ion channel; ion flow; PNP models; three ion species; monotonic vs. oscillatory spatial profiles; DENSITY-FUNCTIONAL THEORY; I-V RELATIONS; REVERSAL PERMANENT CHARGE; FREE-ENERGY MODEL; ASYMPTOTIC EXPANSIONS; SYSTEMS; CHANNELS; FLOW; PERTURBATION; POTENTIALS;
D O I
10.11948/20220195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider ionic flows through an ion channel via a quasi-one-dimensional classical Poisson-Nernst-Planck model. The specific biological setup involves ionic solutions with three ion species and the permanent charge is set to be zero. It is known that, for ionic flows with two ion species, the spatial profiles of the electric potential and the ion concentrations are monotonic, independent of boundary conditions. For ionic flows with three or more ion species with at least three different valences, depending on the boundary conditions, the profiles could be oscillatory. In this work, for ionic mixtures with two cation species of different valences and one anion species, we will provide a complete classification in terms of boundary conditions on when the profiles are monotonic and when they are oscillatory. This would be an important step for studies including nonzero permanent charges.
引用
收藏
页码:1211 / 1233
页数:23
相关论文
共 50 条
  • [1] Electroneutral models for dynamic Poisson-Nernst-Planck systems
    Song, Zilong
    Cao, Xiulei
    Huang, Huaxiong
    PHYSICAL REVIEW E, 2018, 97 (01):
  • [2] Test of Poisson-Nernst-Planck theory in ion channels
    Corry, B
    Kuyucak, S
    Chung, SH
    JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (04): : 597 - 599
  • [3] Poisson-Nernst-Planck systems for ion channels with permanent charges
    Eisenberg, Bob
    Liu, Weishi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1932 - 1966
  • [4] Electroneutral models for a multidimensional dynamic Poisson-Nernst-Planck system
    Song, Zilong
    Cao, Xiulei
    Huang, Huaxiong
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [5] Three dimensional Poisson-Nernst-Planck theory of open channels
    Hollerbach, U
    Chen, D
    Nonner, W
    Eisenberg, B
    BIOPHYSICAL JOURNAL, 1999, 76 (01) : A205 - A205
  • [6] Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore
    Bolintineanu, Dan S.
    Sayyed-Ahmad, Abdallah
    Davis, H. Ted
    Kaznessis, Yiannis N.
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (01)
  • [7] Reliability of Poisson-Nernst-Planck Anomalous Models for Impedance Spectroscopy
    Lenzi, E. K.
    Evangelista, L. R.
    Taghizadeh, L.
    Pasterk, D.
    Zola, R. S.
    Sandev, T.
    Heitzinger, C.
    Petreska, I
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (37): : 7885 - 7892
  • [8] ION SIZE AND VALENCE EFFECTS ON IONIC FLOWS VIA POISSON-NERNST-PLANCK MODELS
    Bates, Peter W.
    Liu, Weishi
    Lu, Hong
    Zhang, Mingji
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 881 - 901
  • [9] Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels
    Corry, B
    Kuyucak, S
    Chung, SH
    BIOPHYSICAL JOURNAL, 2003, 84 (06) : 3594 - 3606
  • [10] Second-order Poisson-Nernst-Planck solver for ion transport
    Zheng, Qiong
    Chen, Duan
    Wei, Guo-Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) : 5239 - 5262