Loss reduction of silicon-on-insulator waveguides for deep mid-infrared applications

被引:17
作者
He, Liuqing [1 ,2 ]
Guo, Yuhao [1 ,2 ]
Han, Zhaohong [3 ]
Wada, Kazumi [3 ,4 ]
Kimerling, Lionel C. [3 ]
Michel, Jurgen [3 ]
Agarwal, Anuradha M. [3 ]
Li, Guifang [1 ,2 ,5 ,6 ]
Zhang, Lin [1 ,2 ]
机构
[1] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Minist Educ, Key Lab Optoelect Informat Technol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Key Lab Integrated Optoelect Technol & Devices, Tianjin 300072, Peoples R China
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Tokyo, Dept Mat Engn, Tokyo 1138656, Japan
[5] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
[6] Univ Cent Florida, Coll Opt & Photon, FPCE, Orlando, FL 32816 USA
基金
中国国家自然科学基金;
关键词
RING-RESONATOR; PHOTONICS;
D O I
10.1364/OL.42.003454
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report that propagation loss of optical waveguides based on a silicon-on-insulator (SOI) material platform can be greatly reduced. Our simulations show that the loss, including SiO2 absorption and substrate leakage, but no scattering loss, is 0.024 and 0.53 dB/cm in the deep mid-infrared at 4.8 and 7.1 mu m wavelengths, where the material absorption in SiO2 is 100 and 1000 dB/cm, respectively. The loss becomes negligible, compared to scattering loss in Si waveguides. This is enabled by using the TE10 mode in a pedestal waveguide. We also show that the TE10 mode can be excited in the proposed waveguide by the fundamental mode with a coupling efficiency of >94%. Low propagation loss, high coupling efficiency, and fabrication-friendly design would make it promising for practical use of SOI devices in the deep mid-infrared. (C) 2017 Optical Society of America
引用
收藏
页码:3454 / 3457
页数:4
相关论文
共 22 条
[1]   Silicon-on-sapphire integrated waveguides for the mid-infrared [J].
Baehr-Jones, Tom ;
Spott, Alexander ;
Ilic, Rob ;
Spott, Andrew ;
Penkov, Boyan ;
Asher, William ;
Hochberg, Michael .
OPTICS EXPRESS, 2010, 18 (12) :12127-12135
[2]   Polymer microring resonators for biochemical sensing applications [J].
Chao, CY ;
Fung, W ;
Guo, LJ .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (01) :134-142
[3]   HIGHLY COMPACT OPTICAL WAVE-GUIDES WITH A NOVEL PEDESTAL GEOMETRY [J].
CHAUDHARI, AD ;
WEST, LC ;
ROBERTS, CW ;
LU, YC .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (05) :526-528
[4]   Single polarization transmission in pedestal-supported silicon waveguides [J].
Cheng, Jierong ;
Zhang, Wei ;
Zhou, Qiang ;
Wang, Yu ;
Huang, Yidong ;
Peng, Jiangde .
OPTICS LETTERS, 2011, 36 (10) :1797-1799
[5]   Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator [J].
Cheng, Zhenzhou ;
Chen, Xia ;
Wong, Chi Yan ;
Xu, Ke ;
Tsang, Hon Ki .
IEEE PHOTONICS JOURNAL, 2012, 4 (05) :1510-1519
[6]  
Hu J, 2016, CONF LASER ELECTR
[7]   Measurement and tuning of the chromatic dispersion of a silicon photonic wire around the half band gap spectral region [J].
Leo, Francois ;
Dave, Utsav ;
Keyvaninia, Shahram ;
Kuyken, Bart ;
Roelkens, Gunther .
OPTICS LETTERS, 2014, 39 (03) :711-714
[8]   Si-CMOS compatible materials and devices for mid-IR microphotonics [J].
Lin, Pao Tai ;
Singh, Vivek ;
Wang, Jianfei ;
Lin, Hongtao ;
Hu, Juejun ;
Richardson, Kathleen ;
Musgraves, J. David ;
Luzinov, Igor ;
Hensley, Joel ;
Kimerling, Lionel C. ;
Agarwal, Anu .
OPTICAL MATERIALS EXPRESS, 2013, 3 (09) :1474-1487
[9]   Low-loss silicon platform for broadband mid-infrared photonics [J].
Miller, Steven A. ;
Yu, Mengjie ;
Ji, Xingchen ;
Griffith, Austin G. ;
Cardenas, Jaime ;
Gaeta, Alexander L. ;
Lipson, Michal .
OPTICA, 2017, 4 (07) :707-712
[10]   Silicon waveguides and devices for the mid-infrared [J].
Milosevic, Milan M. ;
Nedeljkovic, Milos ;
Ben Masaud, Taha M. ;
Jaberansary, Ehsan ;
Chong, Harold M. H. ;
Emerson, Neil G. ;
Reed, Graham T. ;
Mashanovich, Goran Z. .
APPLIED PHYSICS LETTERS, 2012, 101 (12)