Global solutions to the spherically symmetric Einstein-scalar field system with a positive cosmological constant in Bondi coordinates

被引:6
作者
Costa, Joao L. [1 ,2 ]
Mena, Filipe C. [2 ,3 ]
机构
[1] Inst Univ Lisboa ISCTE IUL, Av Forcas Armadas, P-1649026 Lisbon, Portugal
[2] Univ Lisbon, Ctr Anal Matemat Geometria & Sistemas Dinam, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
[3] Univ Minho, Ctr Matemat, P-4710057 Braga, Portugal
关键词
Einstein field equations; global existence of solutions; asymptotic analysis; NONLINEAR FUTURE STABILITY; COSMIC NO-HAIR; FLRW FAMILY; ASYMPTOTICS; EXISTENCE; EQUATIONS;
D O I
10.1142/S0219891621500107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a characteristic initial value problem, with initial data given on a future null cone, for the Einstein (massless) scalar field system with a positive cosmological constant, in Bondi coordinates. We prove that, for small data, this system has a unique global classical solution which is causally geodesically complete to the future and decays polynomially in radius and exponentially in Bondi time, approaching the de Sitter solution.
引用
收藏
页码:311 / 341
页数:31
相关论文
共 29 条
[1]   The Einstein-Friedrich-nonlinear scalar field system and the stability of scalar field cosmologies [J].
Alho, Artur ;
Mena, Filipe C. ;
Kroon, Juan A. Valiente .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (04) :857-899
[2]   Proof of the cosmic no-hair conjecture in the T3-Gowdy symmetric Einstein-Vlasov setting [J].
Andreasson, H. ;
Ringstrom, H. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (07) :1565-1650
[3]   Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein-Gordon system [J].
Chae, DH .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (21) :4589-4605
[4]  
Christodoulou D, 2009, EMS TEXTB MATH, P1, DOI 10.4171/068
[5]   THE PROBLEM OF A SELF-GRAVITATING SCALAR FIELD [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :337-361
[6]   Cosmic No-Hair in Spherically Symmetric Black Hole Spacetimes [J].
Costa, Joao L. ;
Natario, Jose ;
Oliveira, Pedro .
ANNALES HENRI POINCARE, 2019, 20 (09) :3059-3090
[7]   The spherically symmetric Einstein-scalar field system with positive and vanishing cosmological constant: a comparison [J].
Costa, Joao L. .
GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (12) :2415-2440
[8]   The Problem of a Self-Gravitating Scalar Field with Positive Cosmological Constant [J].
Costa, Joao L. ;
Alho, Artur ;
Natario, Jose .
ANNALES HENRI POINCARE, 2013, 14 (05) :1077-1107
[9]   Spherical linear waves in de Sitter spacetime [J].
Costa, Joao L. ;
Alho, Artur ;
Natario, Jose .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)
[10]   Strong Cosmic Censorship for Surface-Symmetric Cosmological Spacetimes with Collisionless Matter [J].
Dafermos, Mihalis ;
Rendall, Alan D. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (05) :815-908