Wideband and Compact Fabry-Perot Cavity Antenna Using Single Layer PRS With Circular Patch

被引:1
作者
Fang, Shi [1 ]
Zhang, Li [1 ]
Guan, Yunjie [1 ]
Wen, Xinyun [1 ]
机构
[1] Xidian Univ, Key Lab Antenna & Microwave Technol, Xian, Peoples R China
来源
2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT) | 2022年
关键词
Fabry-Perot cavity antenna; PRS; circular patch; broadband; RESONATOR ANTENNA;
D O I
10.1109/ICMMT55580.2022.10022685
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A broadband and compact Fabry-Perot cavity antenna (FPCA) with single-layer partially reflective surface (PRS) is presented. The structure of the PRS designed by printing complementary circular patches on the top of the dielectric substrate and circular apertures on the bottom of it. By optimizing the parameters of PRS structure, the PRS produced positive phase gradient in the relatively wide operating frequency range from 7.8-10.5GHz, which obviously extends bandwidth of the FPCA. The FPCA fed by 2x2 slots coupled 2x2 patches, which not only produces a wide impedance bandwidth, but also reduces complexity of fabrication. The simulation results of the proposed antenna show that the -10dB impedance bandwidth of 7.72-10.83GHz (33%). The 3dB gain bandwidth of 7.8-10.1GHz (25%) with a peak gain of 13.6dBi. Expanding bandwidth using only single-layer dielectric substrate.
引用
收藏
页数:3
相关论文
共 10 条
[1]   Bandwidth Enhancement of the Resonant Cavity Antenna by Using Two Dielectric Superstrates [J].
Al-Tarifi, Muhannad A. ;
Anagnostou, Dimitris E. ;
Amert, Anthony K. ;
Whites, Keith W. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (04) :1898-1908
[2]   High gain planar antenna using optimised partially ref lective surfaces [J].
Feresidis, AP ;
Vardaxoglou, JC .
IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2001, 148 (06) :345-350
[3]   Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement [J].
Gardelli, Renato ;
Albani, Matteo ;
Capolino, Filippo .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (07) :1979-1990
[4]   GAIN ENHANCEMENT METHODS FOR PRINTED-CIRCUIT ANTENNAS [J].
JACKSON, DR ;
ALEXOPOULOS, NG .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1985, 33 (09) :976-987
[5]   Wideband Fabry-Perot Cavity Antenna With a Shaped Ground Plane [J].
Ji, Lu-Yang ;
Qin, Pei-Yuan ;
Guo, Y. Jay .
IEEE ACCESS, 2018, 6 :2291-2297
[6]   Multilayer Partially Reflective Surfaces for Broadband Fabry-Perot Cavity Antennas [J].
Konstantinidis, Konstantinos ;
Feresidis, Alexandros P. ;
Hall, Peter S. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (07) :3474-3481
[7]   Directive Wideband Cavity Antenna With Single-Layer Meta-Superstrate [J].
Meriche, Mohammed Amin ;
Attia, Hussein ;
Messai, Abderraouf ;
Mitu, Sheikh Sharif Iqbal ;
Denidni, Tayeb Ahmed .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (09) :1771-1774
[8]   Wideband Fabry-Perot Resonator Antenna Employing Multilayer Partially Reflective Surface [J].
Niaz, Muhammad Wasif ;
Yin, Yingzeng ;
Bhatti, Rashid Ahmad ;
Cai, Yuan-Ming ;
Chen, Jingdong .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (04) :2404-2409
[9]   Wideband Fabry-Perot Resonator Antenna With Electrically Thin Dielectric Superstrates [J].
Wang, Naizhi ;
Talbi, Larbi ;
Zeng, Qingsheng ;
Xu, Jiadong .
IEEE ACCESS, 2018, 6 :14966-14973
[10]   Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth [J].
Weily, A. R. ;
Esselle, K. P. ;
Bird, T. S. ;
Sanders, B. C. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2007, 1 (01) :198-203