Maximum likelihood estimation in the non-ergodic fractional Vasicek model

被引:6
|
作者
Lohvinenko, Stanislav [1 ]
Ralchenko, Kostiantyn [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Theory Stat & Actuarial Math, 64 Volodymyrska St, UA-01601 Kiev, Ukraine
来源
MODERN STOCHASTICS-THEORY AND APPLICATIONS | 2019年 / 6卷 / 03期
关键词
Fractional Brownian motion; fractional Vasicek model; maximum likelihood estimation; moment generating function; asymptotic distribution; non-ergodic process; ORNSTEIN-UHLENBECK PROCESS; PARAMETER-ESTIMATION; ASYMPTOTIC THEORY; DISTRIBUTIONS;
D O I
10.15559/19-VMSTA140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the fractional Vasicek model described by the stochastic differential equation dX(t) = (alpha - beta X-t) dt + gamma dB(t)(H), X-0 = x(0), driven by the fractional Brownian motion B-H with the known Hurst parameter H is an element of(1/2, 1). We study the maximum likelihood estimators for unknown parameters alpha and beta in the non-ergodic case (when beta < 0) for arbitrary x(0) is an element of R, generalizing the result of Tanaka, Xiao and Yu (2019) for particular x(0) = alpha/beta, derive their asymptotic distributions and prove their asymptotic independence.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 50 条