"Water-in-Deep Eutectic Solvent" Electrolytes for High-Performance Aqueous Zn-Ion Batteries

被引:226
作者
Shi, Jinqiang [1 ]
Sun, Tianjiang [1 ]
Bao, Junquan [1 ]
Zheng, Shibing [1 ]
Du, Haihui [1 ]
Li, Lin [1 ]
Yuan, Xuming [1 ]
Ma, Tao [1 ]
Tao, Zhanliang [1 ]
机构
[1] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
aqueous electrolytes; deep eutectic solvents; solvation modulation; uniform nucleation;
D O I
10.1002/adfm.202102035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous Zn-ion batteries have been considered as promising alternatives to Li-ion batteries due to their abundant reserves, low price, and high safety. However, Zn anode shows poor reversibility and cycling stability in most conventional aqueous electrolytes. Here, a new type of aqueous Zn-ion electrolyte based on ZnCl2-acetamide deep eutectic solvent with both environmental and economic friendliness has been prepared. The water molecule introduced in the "water-in-deep eutectic solvent" electrolyte could reduce the Zn2+ desolvation energy barrier by regulating Zn2+ solvation structure to promote uniform Zn nucleation. Zn anode shows improved electrochemical performance (approximate to 98% Coulombic efficiency over 1000 cycles) in the electrolyte whose molar ratio of ZnCl2:acetamide:H2O is 1:3:1. The assembled full battery composed of phenazine cathode and Zn anode could stably cycle over 10 000 cycles with a high capacity retention of 85.7%. Overall, this work offers new insights into exploring new green electrolyte systems for Zn-ion batteries.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Eutectic-based ionic liquids with metal-containing anions and cations [J].
Abbott, Andrew P. ;
Barron, John C. ;
Ryder, Karl S. ;
Wilson, David .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (22) :6495-6501
[2]   Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, R .
INORGANIC CHEMISTRY, 2004, 43 (11) :3447-3452
[3]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[4]   Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Kwak, Hunho H. ;
Lee, Hochun ;
Hong, Seung-Tae .
JOURNAL OF POWER SOURCES, 2017, 337 :204-211
[5]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[6]   A Room-Temperature Molten Hydrate Electrolyte for Rechargeable Zinc-Air Batteries [J].
Chen, Chih-Yao ;
Matsumoto, Kazuhiko ;
Kubota, Keigo ;
Hagiwara, Rika ;
Xu, Qiang .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[7]   Solvation Structure of Zn2+ and Cu2+ Ions in Acetonitrile: A Combined EXAFS and XANES Study [J].
D'Angelo, Paola ;
Migliorati, Valentina .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (10) :4061-4067
[8]   A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode [J].
Deng, Canbin ;
Xie, Xuesong ;
Han, Junwei ;
Tang, Yan ;
Gao, Jiawei ;
Liu, Cunxin ;
Shi, Xiaodong ;
Zhou, Jiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (21)
[9]   Long-Life Zinc/Vanadium Pentoxide Battery Enabled by a Concentrated Aqueous ZnSO4 Electrolyte with Proton and Zinc Ion Co-Intercalation [J].
Dong, Yang ;
Jia, Ming ;
Wang, Yuanyuan ;
Xu, Jianzhong ;
Liu, Yongchang ;
Jiao, Lifang ;
Zhang, Ning .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) :11183-11192
[10]   Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries [J].
Dong, Yang ;
Di, Shengli ;
Zhang, Fangbo ;
Bian, Xu ;
Wang, Yuanyuan ;
Xu, Jianzhong ;
Wang, Liubin ;
Cheng, Fangyi ;
Zhang, Ning .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (06) :3252-3261