Recently, an increasing number of works have been reported about iron-based materials applied as catalysts in peroxide activation processes to degrade pollutants in water. Iron-based catalysts include synthetic and natural iron-based materials. However, some synthetic iron-based materials are difficult to scale up in the practical applications due to high cost and serious secondary environmental pollution. In contrast, natural iron-based minerals are more available and cheaper, and also hold a great promise in peroxide activation processes for pollutant degradation. In this review, we classify different natural iron-based materials into two categories: iron oxide minerals (e.g., magnetite, hematite, and goethite,), and iron sulfide minerals (e.g., pyrite and pyrrhotite,). Their overview applications in peroxide activation processes for pollutant degradation in wastewaters are systematically summarized for the first time. Moreover, the peroxide activation mechanisms induced by natural minerals, and the influences of reaction conditions in different systems are discussed. Finally, the application prospects and existing drawbacks of natural iron-based minerals in the peroxide activation processes for wastewater treatment are proposed. We believe this review can shed light on the application of natural ironbased minerals in peroxide activation processes and present better perspectives for future researches.