Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin

被引:145
作者
Cao, DS
Wang, ZG
Zhang, CL
Oh, J
Xing, WB
Li, SJ
Richardson, JA
Wang, DZ
Olson, EN
机构
[1] Univ Texas, SW Med Ctr, Dept Biol Mol, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Pathol, Dallas, TX 75390 USA
[3] Univ N Carolina, Dept Cell & Dev Biol, Carolina Cardiovasc Biol Ctr, Chapel Hill, NC USA
关键词
D O I
10.1128/MCB.25.1.364-376.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differentiation of smooth muscle cells is accompanied by the transcriptional activation of an array of muscle-specific genes controlled by serum response factor (SRF). Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of SRF and is sufficient and necessary for smooth muscle gene expression. Here, we show that myocardin induces the acetylation of nucleosomal histones surrounding SRF-binding sites in the control regions of smooth muscle genes. The promyogenic activity of myocardin is enhanced by p300, a histone acetyltransferase that associates with the transcription activation domain of myocardin. Conversely, class II histone deacetylases interact with a domain of myocardin distinct from the p300-binding domain and suppress smooth muscle gene activation by myocardin. These findings point to myocardin as a nexus for positive and negative regulation of smooth muscle gene expression by changes in chromatin acetylation.
引用
收藏
页码:364 / 376
页数:13
相关论文
共 57 条
[1]   E1A-ASSOCIATED P300 AND CREB-ASSOCIATED CBP BELONG TO A CONSERVED FAMILY OF COACTIVATORS [J].
ARANY, Z ;
SELLERS, WR ;
LIVINGSTON, DM ;
ECKNER, R .
CELL, 1994, 77 (06) :799-800
[2]   SAP - a putative DNA-binding motif involved in chromosomal organization [J].
Aravind, L ;
Koonin, EV .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (03) :112-114
[3]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[4]   A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity [J].
Chakravarti, D ;
Ogryzko, V ;
Kao, HY ;
Nash, A ;
Chen, HW ;
Nakatani, Y ;
Evans, RM .
CELL, 1999, 96 (03) :393-403
[5]  
Chan HM, 2001, J CELL SCI, V114, P2363
[6]   Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors [J].
Chang, DF ;
Belaguli, NS ;
Iyer, D ;
Roberts, WB ;
Wu, SP ;
Dong, XR ;
Marx, JG ;
Moore, MS ;
Beckerle, MC ;
Majesky, MW ;
Schwartz, RJ .
DEVELOPMENTAL CELL, 2003, 4 (01) :107-118
[7]   Muscle specificity encoded by specific serum response factor-binding sites [J].
Chang, PS ;
Li, L ;
McAnally, J ;
Olson, EN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (20) :17206-17212
[8]   Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development [J].
Chang, SR ;
McKinsey, TA ;
Zhang, CL ;
Richardson, JA ;
Hill, JA ;
Olson, EN .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) :8467-8476
[9]   Myocardin: A component of a molecular switch for smooth muscle differentiation [J].
Chen, JY ;
Kitchen, CM ;
Streb, JW ;
Miano, JM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2002, 34 (10) :1345-1356
[10]   Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4 - Implications in cardiac muscle gene regulation during hypertrophy [J].
Davis, FJ ;
Gupta, M ;
Camoretti-Mercado, B ;
Schwartz, RJ ;
Gupta, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :20047-20058