Probability Representation of Quantum Channels

被引:1
作者
Avanesov, A. S. [1 ,2 ,3 ]
Man'ko, V. I. [1 ,2 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
[2] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[3] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[4] Tomsk State Univ, Dept Phys, Tomsk 634050, Russia
关键词
quantum channel; Choi-Jamiolkowski isomorphism; tomographic probability representation of quantum mechanics; DYNAMICS; STATES;
D O I
10.1134/S1995080219100056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the known possibility to associate the completely positive maps with density matrices and recent results on expressing the density matrices with sets of classical probability distributions of dichotomic random variables we construct the probability representation of the completely positive maps. In this representation, any completely positive map of qubit state density matrix is identified with the set of classical coin probability distributions. Examples of the maps of qubit states are studied in detail. The evolution equation of quantum states is written in the form of the classical-like kinetic equation for probability distributions identified with qubit state.
引用
收藏
页码:1444 / 1449
页数:6
相关论文
共 40 条
[11]   Triangle Geometry for Qutrit States in the Probability Representation [J].
Chernega, Vladimir N. ;
Man'ko, Olga V. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2017, 38 (05) :416-425
[12]   Probability Representation of Quantum Observables and Quantum States [J].
Chernega, Vladimir N. ;
Man'ko, Olga V. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2017, 38 (04) :324-333
[13]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[14]  
Dirac P., 1982, The Principles of Quantum Mechanics
[15]   Positive distribution description for spin states [J].
Dodonov, VV ;
Manko, VI .
PHYSICS LETTERS A, 1997, 229 (06) :335-339
[16]   COHERENT AND INCOHERENT STATES OF RADIATION FIELD [J].
GLAUBER, RJ .
PHYSICAL REVIEW, 1963, 131 (06) :2766-+
[17]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[18]  
Husimi K., 1940, P PHYS-MATH SOC JPN, V22, P264, DOI DOI 10.11429/PPMSJ1919.22.4_264
[19]   An introduction to the tomographic picture of quantum mechanics [J].
Ibort, A. ;
Man'ko, V. I. ;
Marmo, G. ;
Simoni, A. ;
Ventriglia, F. .
PHYSICA SCRIPTA, 2009, 79 (06)
[20]  
Jamiokowski A., 1972, Rep. Math. Phys, V3, P275, DOI [DOI 10.1016/0034-4877(72)90011-0, 10.1016/0034-4877(72)90011-0, https://doi.org/10.1016/0034-4877(72)90011-0]