Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on-off photodetectors, and entanglement swapping

被引:12
作者
Seshadreesan, Kaushik P. [1 ,2 ,3 ,4 ]
Takeoka, Masahiro [1 ]
Sasaki, Masahide [1 ]
机构
[1] Natl Inst Informat & Commun Technol, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Max Planck Inst Phys Lichts, Gunther Scharowsky Str 1,Bau 24, D-91058 Erlangen, Germany
基金
美国国家科学基金会;
关键词
TELECOM WAVELENGTH; CRYPTOGRAPHY; PHOTONS; AMPLIFICATION; INFORMATION; INEQUALITY; STATES; SPACE;
D O I
10.1103/PhysRevA.93.042328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key without making assumptions about the internal workings of the devices used for distribution. It does so using the loophole-free violation of a Bell's inequality. The primary challenge in realizing DIQKD in practice is the detection loophole problem that is inherent to photonic tests of Bell' s inequalities over lossy channels. We revisit the proposal of Curty and Moroder [Phys.Rev.A 84, 010304(R) (2011)] to use a linear optics-based entanglement-swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure, and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much larger than what is possible otherwise.
引用
收藏
页数:11
相关论文
共 41 条
  • [1] Device-independent security of quantum cryptography against collective attacks
    Acin, Antonio
    Brunner, Nicolas
    Gisin, Nicolas
    Massar, Serge
    Pironio, Stefano
    Scarani, Valerio
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (23)
  • [2] Efficient quantum key distribution secure against no-signalling eavesdroppers
    Acin, Antonio
    Massar, Serge
    Pironio, Stefano
    [J]. NEW JOURNAL OF PHYSICS, 2006, 8
  • [3] Continuous Variable Quantum Information: Gaussian States and Beyond
    Adesso, Gerardo
    Ragy, Sammy
    Lee, Antony R.
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
  • [4] Bennett C H, 1984, P IEEE INT C COMP SY, V175, P175
  • [5] QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES
    BENNETT, CH
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3121 - 3124
  • [6] Brunner N, 2014, REV MOD PHYS, V86, DOI 10.1103/RevModPhys.86.419
  • [7] Entanglement-based quantum key distribution with biased basis choice via free space
    Cao, Yuan
    Liang, Hao
    Yin, Juan
    Yong, Hai-Lin
    Zhou, Fei
    Wu, Yu-Ping
    Ren, Ji-Gang
    Li, Yu-Huai
    Pan, Ge-Sheng
    Yang, Tao
    Ma, Xiongfeng
    Peng, Cheng-Zhi
    Pan, Jian-Wei
    [J]. OPTICS EXPRESS, 2013, 21 (22): : 27260 - 27268
  • [8] QUANTUM GENERALIZATIONS OF BELLS-INEQUALITY
    CIRELSON, BS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1980, 4 (02) : 93 - 106
  • [9] PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES
    CLAUSER, JF
    HORNE, MA
    SHIMONY, A
    HOLT, RA
    [J]. PHYSICAL REVIEW LETTERS, 1969, 23 (15) : 880 - &
  • [10] Heralded-qubit amplifiers for practical device-independent quantum key distribution
    Curty, Marcos
    Moroder, Tobias
    [J]. PHYSICAL REVIEW A, 2011, 84 (01)