Approximation theory for the hp-version finite element method and application to the non-linear Laplacian

被引:24
作者
Ainsworth, M
Kay, D
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
基金
英国工程与自然科学研究理事会;
关键词
p-Laplacian; hp-finite element method; a priori error estimation;
D O I
10.1016/S0168-9274(99)00040-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-linear Laplacian involves the differential equation -del . (\del u\(alpha-2) del u) = f a.e. in Omega where alpha is an element of (1, infinity) and Omega is a polygonal domain. The classical error estimates for the h version finite element approximation are generalized to the hp version, when applied to locally quasi-uniform meshes of quadrilateral elements. The estimates are expressed as an explicit function of the mesh-size h and the order p of the elements. The estimates include the case when the solution belongs to a Sobolev class and also when the solution has algebraic singularities due to the geometry of the domain. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:329 / 344
页数:16
相关论文
共 13 条
[1]  
Adams R, 1978, Sobolev spaces
[2]  
AINSWORTH M, IN PRESS NUMER MATH
[3]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[4]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[5]  
BABUSKA I, 1981, SIAM J NUMER ANAL, V18, P512
[6]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[7]  
Bergh J., 1976, INTERPOLATION SPACES
[9]  
Ciarlet P.G., 1980, FINITE ELEMENT METHO
[10]  
DOBROWOLSKI M, 1989, J REINE ANGEW MATH, V394, P186