Scattering processes and electrical conductivity of partially ionized hydrogen plasma

被引:66
作者
Ramazanov, T
Galiyev, K
Dzhumagulova, KN
Röpke, G
Redmer, R [1 ]
机构
[1] Univ Rostock, Fachbereich Phys, D-18051 Rostock, Germany
[2] Al Farabi Kazakh Natl Univ, SRIETP, Alma Ata 480012, Kazakhstan
关键词
transport properties of plasmas; strongly coupled plasmas; elementary prozesses in plasmas;
D O I
10.1002/ctpp.200310005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider partially ionized hydrogen plasma for the density region n(e) = (10(18) divided by 10(22))cm(-3). The cross sections for scattering processes between the particles are calculated within the partial wave method. Charged particles in the system (electrons, protons) interact via an effective potential that takes into account three-particle correlations. The Buckingham polarization potential is used to describe electron-atom and proton-atom interactions. The electrical conductivity is determined using the Chapman-Enskog method. The results are compared with other available data.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 32 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1985, LEHRBUCH THEORETISCH
[3]  
[Anonymous], 1986, Quantum Statistics of Charged Particle Systems
[4]   CONDUCTIVITY AND CROSS-SECTIONS FOR PARTIALLY IONIZED CESIUM AND SODIUM PLASMAS [J].
ARNDT, S ;
SIGENEGER, F ;
BIALAS, F ;
KRAEFT, WD ;
LUFT, M ;
MEYER, T ;
REDMER, R ;
ROPKE, G ;
SCHLANGES, M .
CONTRIBUTIONS TO PLASMA PHYSICS, 1990, 30 (02) :273-283
[5]  
BABIKOV VV, 1988, METHOD PHASE FUNCTIO
[6]   PSEUDOPOTENTIAL THEORY OF CLASSICAL NONIDEAL PLASMAS [J].
BAIMBETOV, FB ;
NUREKENOV, KT ;
RAMAZANOV, TS .
PHYSICS LETTERS A, 1995, 202 (2-3) :211-214
[7]   Electrical conductivity and scattering sections of strongly coupled hydrogen plasmas [J].
Baimbetov, FB ;
Nurekenov, KT ;
Ramazanov, TS .
PHYSICA A, 1996, 226 (1-2) :181-190
[8]  
Calogero F., 1967, Variable Phase Approach to Potential Scattering
[9]  
Chapman S., 1990, The Mathematical Theory of Non-Uniform Gases, Vthird
[10]  
Ferziger J. H., 1972, MATH THEORY TRANSPOR