Adiabatic tracking of quantum many-body dynamics

被引:126
作者
Saberi, Hamed [1 ,2 ,3 ]
Opatrny, Tomas [1 ]
Molmer, Klaus [4 ]
del Campo, Adolfo [5 ,6 ,7 ]
机构
[1] Palacky Univ, Fac Sci, Dept Opt, Olomouc 77146, Czech Republic
[2] Univ Paderborn, Dept Phys, D-33098 Paderborn, Germany
[3] Univ Paderborn, CeOPP, D-33098 Paderborn, Germany
[4] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[5] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
[6] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[7] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
TRAPPED IONS; PHASE-TRANSITION; SIMULATION;
D O I
10.1103/PhysRevA.90.060301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The nonadiabatic dynamics of a many-body system driven through a quantum critical point can be controlled using counterdiabatic driving, where the formation of excitations is suppressed by assisting the dynamics with auxiliary multiple-body nonlocal interactions. We propose an alternative scheme which circumvents practical challenges to realize shortcuts to adiabaticity in mesoscopic systems by tailoring the functional form of the auxiliary counterdiabatic interactions. A driving scheme resorting in short-range few-body interactions is shown to generate an effectively adiabatic dynamics.
引用
收藏
页数:5
相关论文
共 50 条
[1]   Optimal nonlinear passage through a quantum critical point [J].
Barankov, Roman ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[2]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[3]  
Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
[4]   Transitionless quantum driving [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
[5]   Chopped random-basis quantum optimization [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (02)
[6]   Quantum Simulation of Interacting Fermion Lattice Models in Trapped Ions [J].
Casanova, J. ;
Mezzacapo, A. ;
Lamata, L. ;
Solano, E. .
PHYSICAL REVIEW LETTERS, 2012, 108 (19)
[7]   Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving [J].
Deffner, Sebastian ;
Jarzynski, Christopher ;
del Campo, Adolfo .
PHYSICAL REVIEW X, 2014, 4 (02)
[8]   Causality and non-equilibrium second-order phase transitions in inhomogeneous systems [J].
del Campo, A. ;
Kibble, T. W. B. ;
Zurek, W. H. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (40)
[9]   Universality of phase transition dynamics: Topological defects from symmetry breaking [J].
del Campo, Adolfo ;
Zurek, Wojciech H. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (08)
[10]   Shortcuts to Adiabaticity by Counterdiabatic Driving [J].
del Campo, Adolfo .
PHYSICAL REVIEW LETTERS, 2013, 111 (10)