Analysis of defect luminescence in Ga-doped ZnO nanoparticles

被引:35
作者
Zhu, Wenliang [1 ,2 ]
Kitamura, Shoichiro [2 ]
Boffelli, Marco [2 ]
Marin, Elia [2 ]
Della Gaspera, Enrico [3 ]
Sturaro, Marco [4 ]
Martucci, Alessandro [4 ]
Pezzotti, Giuseppe [2 ]
机构
[1] Osaka Univ, Dept Med Engn Treatment Bone & Joint Disorders, 2-2 Yamadaoka, Suita, Osaka 5650854, Japan
[2] Kyoto Inst Technol, Ceram Phys Lab, Sakyo Ku, Kyoto 6068585, Japan
[3] RMIT Univ, Sch Sci, LaTrobe St, Melbourne, Vic 3001, Australia
[4] Univ Padua, Dipartimento Ingn Ind, Via Marzolo 9, I-35131 Padua, Italy
关键词
GREEN LUMINESCENCE; FILMS; PHOTOLUMINESCENCE; EMISSION; DONOR; 1ST-PRINCIPLES; IMPURITIES; MECHANISMS; EXCITON; FIELD;
D O I
10.1039/c6cp00746e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We applied cathodoluminescence (CL) spectroscopy to evaluate the defect-induced luminescence within ZnO and Ga-doped ZnO (GZO) nanoparticles. The observed emissions from defect sites present in the GZO lattice exhibited a strong dependence on both dopant content and synthesis methods. The strong and broad defect-induced emissions and inhomogeneous population of intrinsic defects in nanosized ZnO particles could effectively be suppressed by Ga doping, although large dopant amounts caused the generation of negatively-charged defects, V-Zn and O-i, with a subsequent increase of the luminescence. Upon deconvolution of the retrieved CL spectra into individual sub-bands, the physical origin of all the sub-bands could be clarified, and related to sample composition and synthesis protocol. This study lays the foundation of quantitative CL evaluation of defects to assess the quality of GZO optoelectronic devices.
引用
收藏
页码:9586 / 9593
页数:8
相关论文
共 55 条
[1]   A comparative analysis of deep level emission in ZnO layers deposited by various methods [J].
Ahn, Cheol Hyoun ;
Kim, Young Yi ;
Kim, Dong Chan ;
Mohanta, Sanjay Kumar ;
Cho, Hyung Koun .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (01)
[2]   Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis [J].
Babar, A. R. ;
Deshamukh, P. R. ;
Deokate, R. J. ;
Haranath, D. ;
Bhosale, C. H. ;
Rajpure, K. Y. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
[3]   High temperature excitonic stimulated emission from ZnO epitaxial layers [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1998, 73 (08) :1038-1040
[4]   Optically pumped lasing of ZnO at room temperature [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Koyama, S ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1997, 70 (17) :2230-2232
[5]   Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals [J].
Buonsanti, Raffaella ;
Llordes, Anna ;
Aloni, Shaul ;
Helms, Brett A. ;
Milliron, Delia J. .
NANO LETTERS, 2011, 11 (11) :4706-4710
[6]   One-pot synthesis of high-quality zinc-blende CdS nanocrystals [J].
Cao, YC ;
Wang, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) :14336-14337
[7]   Electrical and optical studies of ZnO:Ga thin films fabricated via the sol-gel technique [J].
Cheong, KY ;
Muti, N ;
Ramanan, SR .
THIN SOLID FILMS, 2002, 410 (1-2) :142-146
[8]   Solvent dependent shape and magnetic properties of doped ZnO nanostructures [J].
Clavel, Guylhaine ;
Willinger, Marc-Georg ;
Zitoun, David ;
Pinna, Nicola .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3159-3169
[9]   Self-purification in semiconductor nanocrystals [J].
Dalpian, Gustavo M. ;
Chelikowsky, James R. .
PHYSICAL REVIEW LETTERS, 2006, 96 (22)
[10]   Non-injection Synthesis of Doped Zinc Oxide Plasmonic Nanocrystals [J].
Della Gaspera, Enrico ;
Chesman, Anthony S. R. ;
van Embden, Joel ;
Jasieniak, Jacek J. .
ACS NANO, 2014, 8 (09) :9154-9163