ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS

被引:0
|
作者
Rasouli, S. H. [1 ]
Ghaemi, M. B. [2 ]
Afrouzi, G. A. [3 ]
Choubin, M. [4 ]
机构
[1] Babol Univ Technol, Fac Basic Sci, Dept Math, Babol Sar, Iran
[2] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[3] Mazandaran Univ, Fac Basic Sci, Dept Math, Babol Sar, Iran
[4] Velayat Univ, Fac Basic Sci, Dept Math, Iranshahr, Iran
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2014年 / 76卷 / 04期
关键词
Positive solution; Infinite semipositone; Sub- and supersolutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of a positive solution to the infinite semipositone problem -Delta u = au + bu(2) - du(2) - f(u) - c/u(alpha), x is an element of Omega, u = 0, x is an element of partial derivative Omega where alpha is an element of (0, 1), a; b; d and c are positive constants, Omega is a bounded domain in R-N with smooth boundary partial derivative Omega, Delta is the Laplacian operator, and f : [0, infinity) -> R is a nondecreasing continuous function such that f(u) -> infinity and f(u)/u -> 0 as u -> infinity. We obtain our result via the method of sub- and supersolutions. We also extend our result to classes of infinite semipositone system and p-Laplacian problem.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [1] On positive solutions for a class of infinite semipositone problems
    Ghaemi, M. B.
    Choubin, M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2013, 4 (01): : 49 - 54
  • [2] POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS INVOLVING THE p- LAPLACIAN OPERATOR
    Choubin, M.
    Rasouli, S. H.
    Ghaemi, M. B.
    Afrouzi, G. A.
    MATEMATICHE, 2013, 68 (02): : 159 - 166
  • [3] A REMARK ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS VIA SUB AND SUPERSOLUTIONS METHOD
    Shakeri, Saleh
    MATHEMATICAL REPORTS, 2017, 19 (04): : 439 - 445
  • [4] Positive solutions for a class of semipositone Neumann problems
    Tianlan Chen
    Ruyun Ma
    Boundary Value Problems, 2016
  • [5] Positive solutions for infinite semipositone problems with falling zeros
    Lee, Eun Kyoung
    Shivaji, R.
    Ye, Jinglong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4475 - 4479
  • [6] Positive solutions for a class of semipositone Neumann problems
    Chen, Tianlan
    Ma, Ruyun
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 12
  • [7] An existence result for a class of nonlocal infinite semipositone problem
    H. Zahmatkesh
    S. Shakeri
    A. Hadjian
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [8] An existence result for a class of nonlocal infinite semipositone problem
    Zahmatkesh, H.
    Shakeri, S.
    Hadjian, A.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [9] Existence of positive solutions for operator equations and applications to semipositone problems
    Xian, Xu
    O'Regan, Donal
    POSITIVITY, 2006, 10 (02) : 315 - 328
  • [10] UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2059 - 2067