SEMI-SUPERVISED GRAPH FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION

被引:0
|
作者
Liao, Wenzhi [1 ]
Xia, Junshi [2 ,3 ]
Du, Peijun [3 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, TELIN IPI iMinds, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
[2] Univ Bordeaux, Lab Integrat Mat Syst, IMS 5218, F-33405 Talence, France
[3] Nanjing Univ, Key Lab Satellite Mapping Technol & Applicat, State Adm Surveying Mapping & Geoinformat China, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Data fusion; remote sensing; hyperspectral image; LiDAR data; graph-based;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a semi-supervised graph-based fusion framework to couple dimensionality reduction and the fusion of multi-sensor data for classification. First, morphological features are used to model the elevation and spatial information contained in both LiDAR data and on the first few principal components (PCs) of the original hyperspectral (HS) image. Then, we fuse the features by projecting the spectral, spatial and elevation features onto a lower subspace through our proposed semi-supervised fusion graph. Experimental results on fusion of HS and LiDAR data from the 2013 IEEE GRSS Data Fusion Contest demonstrate effectiveness of the proposed method. Compared to the methods using single data source or unsupervised graph fusion, with the proposed method, overall classification accuracies were improved by 9% and 4%, respectively.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 50 条
  • [1] Semi-supervised cross-domain feature fusion classification network for coastal wetland classification with hyperspectral and LiDAR data
    Guo, Fangming
    Li, Zhongwei
    Meng, Qiao
    Ren, Guangbo
    Wang, Leiquan
    Wang, Jianbu
    Qin, Huawei
    Zhang, Jie
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 120
  • [2] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [3] Classification of hyperspectral data by continuation semi-supervised SVM
    Chi, Mingmin
    Bruzzone, Lorenzo
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3794 - +
  • [4] Semi-supervised multiview embedding for hyperspectral data classification
    Volpi, Michele
    Matasci, Giona
    Kanevski, Mikhail
    Tuia, Devis
    NEUROCOMPUTING, 2014, 145 : 427 - 437
  • [5] Graph-Based Semi-Supervised Learning With Tensor Embeddings for Hyperspectral Data Classification
    Georgoulas, Ioannis
    Protopapadakis, Eftychios
    Makantasis, Konstantinos
    Seychell, Dylan
    Doulamis, Anastasios
    Doulamis, Nikolaos
    IEEE ACCESS, 2023, 11 : 124819 - 124832
  • [6] Semi-Supervised Hierarchical Graph Classification
    Li, Jia
    Huang, Yongfeng
    Chang, Heng
    Rong, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6265 - 6276
  • [7] Dynamic Evolution Graph Attention Network for Semi-Supervised Hyperspectral Image Classification
    Xiao, Yi
    Ma, Rong
    Chang, Sheng
    Gao, Xinglin
    Qiao, Xuyi
    Hu, Dan
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [8] Semi-Supervised Multiscale Dynamic Graph Convolution Network for Hyperspectral Image Classification
    Yang, Yuqun
    Tang, Xu
    Zhang, Xiangrong
    Ma, Jingjing
    Liu, Fang
    Jia, Xiuping
    Jiao, Licheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6806 - 6820
  • [9] Semi-supervised locality preserving dense graph convolution for hyperspectral image classification
    Ding Y.
    Zhang Z.
    Zhao X.
    Yang N.
    Cai W.
    Cai W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (12): : 3409 - 3418
  • [10] Spectral-Spatial Classification of Hyperspectral Images with Semi-Supervised Graph Learning
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004