Based on Bagging Method Moving Object Detection Design

被引:0
作者
Zhou, Hong-cheng [1 ]
Chen, Cun-bao [1 ]
机构
[1] JinLing Inst Technol, Inst Informat, Nanjing, Jiangsu, Peoples R China
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON TEACHING AND COMPUTATIONAL SCIENCE | 2014年
关键词
moving object; features; shadow; Bagging; detection;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Focusing on the disturbance of moving cast shadow, a Bagging moving cast shadow removal method is proposed. Collecting shadow discrimination features from multiple shadow discrimination models, a shadow detector is trained by employing Bagging ensemble based learning framework. The shadow detector can automatically select effective shadow discrimination features and be updated online adaptively. Experimental results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:36 / 39
页数:4
相关论文
共 10 条
  • [1] Shadow detection for moving objects based on texture analysis
    Leone, A.
    Distante, C.
    [J]. PATTERN RECOGNITION, 2007, 40 (04) : 1222 - 1233
  • [2] Martel-Brisson Nicolas, 2007, IEEE PAMI, V29, P113
  • [3] An Analysis of Ensemble Pruning Techniques Based on Ordered Aggregation
    Martinez-Munoz, Gonzalo
    Hernandez-Lobato, Daniel
    Suarez, Alberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (02) : 245 - 259
  • [4] Mikic I, 2000, INT C PATT RECOG, P321, DOI 10.1109/ICPR.2000.905341
  • [5] Schreer O, 2002, PROCEEDINGS VIPROMCOM-2002, P371, DOI 10.1109/VIPROM.2002.1026685
  • [6] Detection of moving shadows using mean shift clustering and a significance test
    Toth, D
    Stuke, I
    Wagner, A
    Aach, T
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 260 - 263
  • [7] Wang J. M., 2004, 2004 IEEE International Conference on Networking, Sensing and Control (IEEE Cat. No.04EX761), P649
  • [8] Wang Y, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, P937
  • [9] Wei Z, 2007, IEEE T MULTIMEDIA, V9, P202
  • [10] Ensembling neural networks: Many could be better than all
    Zhou, ZH
    Wu, JX
    Tang, W
    [J]. ARTIFICIAL INTELLIGENCE, 2002, 137 (1-2) : 239 - 263