Norm-parallelism and the Davis-Wielandt radius of Hilbert space operators

被引:21
作者
Zamani, Ali [1 ]
Moslehian, Mohammad Sal [2 ]
Chien, Mao-Ting [3 ]
Nakazato, Hiroshi [4 ]
机构
[1] Farhangian Univ, Dept Math, Tehran, Iran
[2] Ferdowsi Univ Mashhad, CEAAS, Dept Pure Math, Mashhad, Razavi Khorasan, Iran
[3] Soochow Univ, Dept Math, Taipei, Taiwan
[4] Hirosaki Univ, Fac Sci & Technol, Hirosaki, Aomori, Japan
基金
美国国家科学基金会;
关键词
Birkhoff-James orthogonality; norm-parallelism; numerical radius; Davis-Wielandt radius; NUMERICAL RADIUS; LOWER BOUNDS; ORTHOGONALITY; INEQUALITIES; MATRICES;
D O I
10.1080/03081087.2018.1484422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a necessary and sufficient condition for the norm-parallelism of bounded linear operators on a Hilbert space. We also give a characterization of the Birkhoff-James orthogonality for Hilbert space operators. Moreover, we discuss the connection between norm-parallelism to the identity operator and an equality condition for the Davis-Wielandt radius. Some other related results are also discussed.
引用
收藏
页码:2147 / 2158
页数:12
相关论文
共 20 条
[1]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[2]   Characterization of Birkhoff-James orthogonality [J].
Bhattacharyya, Tirthankar ;
Grover, Priyanka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :350-358
[3]   Product of operators and numerical range [J].
Chien, Mao-Ting ;
Gau, Hwa-Long ;
Li, Chi-Kwong ;
Tsai, Ming-Cheng ;
Wang, Kuo-Zhong .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01) :58-67
[4]  
DAVIS C, 1968, ACTA SCI MATH, V29, P69
[5]   A SURVEY OF SOME RECENT INEQUALITIES FOR THE NORM AND NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES [J].
Dragomir, Sever S. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02) :154-175
[6]   Orthogonality of matrices in the Ky Fan k-norms [J].
Grover, Priyanka .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) :496-509
[7]  
Gustafson K.E., 1997, Numerical Range
[8]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[9]   DAVIS-WIELANDT SHELLS OF OPERATORS [J].
Li, Chi-Kwong ;
Poon, Yiu-Tung ;
Sze, Nung-Sing .
OPERATORS AND MATRICES, 2008, 2 (03) :341-355
[10]   LINEAR-OPERATORS PRESERVING THE NUMERICAL RADIUS OF MATRICES [J].
LI, CK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) :601-608