Multisoliton solutions, completely elastic collisions and non-elastic fusion phenomena of two PDEs

被引:25
作者
Khatun, Mst Shekha [1 ]
Hoque, Md Fazlul [1 ,2 ]
Rahman, Md Azizur [1 ]
机构
[1] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 88卷 / 06期
关键词
Direct rational exponential scheme; the double-subequation method; the clannish random walker's parabolic equation; travelling wave solutions; multisoliton solution; MULTIPLE-SOLITON-SOLUTIONS; NONLOCAL NONLINEAR MEDIA; TRAVELING-WAVE SOLUTIONS; BOUSSINESQ EQUATION; OSTROVSKY EQUATION; OPTICAL SOLITONS; DYNAMICS;
D O I
10.1007/s12043-017-1390-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A direct rational exponential scheme is introduced and applied to construct exact multisoliton solutions of the clannish random walker's parabolic and the Vakhnenko-Parkes equations. We discuss the nature of soliton solutions before and after their interactions, and present their fusion (non-elastic) and elastic collisions of the soliton solutions. These soliton solutions of the equations are connected to physical phenomena: weakly non-linear surface, internal waves in a rotating ocean and interacting population motions. In addition, some three-dimensional and contour plots of the soliton wave solutions are presented to visualize the dynamics of the models.
引用
收藏
页数:9
相关论文
共 34 条
[1]   MULTI-SOLITON SOLUTIONS BASED ON INTERACTIONS OF BASIC TRAVELING WAVES WITH AN APPLICATION TO THE NONLOCAL BOUSSINESQ EQUATION [J].
Abdel-Gawad, H. I. ;
Biswas, Anjan .
ACTA PHYSICA POLONICA B, 2016, 47 (04) :1101-1112
[2]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[3]   Shock wave development in couple stress fluid-filled thin elastic tubes [J].
Adesanya, Samuel O. ;
Eslami, Mostafa ;
Mirzazadeh, Mohammad ;
Biswas, Anjan .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (06)
[4]  
Burgers J.M., 1948, ADV APPL MECH, V1
[5]  
Dai CQ, 2016, NONLINEAR DYNAM, V86, P999, DOI 10.1007/s11071-016-2941-8
[6]   Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation [J].
Dai, Chao-Qing ;
Wang, Yu ;
Liu, Jiu .
NONLINEAR DYNAMICS, 2016, 84 (03) :1157-1161
[7]  
Dai CQ, 2016, NONLINEAR DYNAM, V83, P2453, DOI 10.1007/s11071-015-2493-3
[8]  
Dai CQ, 2015, NONLINEAR DYNAM, V80, P715, DOI 10.1007/s11071-015-1900-0
[9]   NUMERICAL STUDY OF REGULARIZED LONG-WAVE EQUATION .2. INTERACTION OF SOLITARY WAVES [J].
EILBECK, JC ;
MCGUIRE, GR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (01) :63-73
[10]   Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method [J].
El-Borai, M. M. ;
El-Owaidy, H. M. ;
Ahmed, Hamdy M. ;
Arnous, Ahmed H. ;
Moshokoa, Seithuti ;
Biswas, Anjan ;
Belic, Milivoj .
OPTIK, 2017, 128 :57-62