ON THE BREGMAN INEXACT PROXIMAL INTERIOR POINT ALGORITHM FOR ABSTRACT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
被引:0
作者:
Ait Mansour, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cadi Ayyad, Dept Math & Informat, Fac Polydisciplinaire, Safi, MoroccoUniv Cadi Ayyad, Dept Math & Informat, Fac Polydisciplinaire, Safi, Morocco
Ait Mansour, M.
[1
]
Chbani, Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cadi Ayyad, Lab Ibn Al Bannaa, Fac Sci Semlalia, Dept Math, Safi, MoroccoUniv Cadi Ayyad, Dept Math & Informat, Fac Polydisciplinaire, Safi, Morocco
Chbani, Z.
[2
]
Riahi, H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cadi Ayyad, Lab Ibn Al Bannaa, Fac Sci Semlalia, Dept Math, Safi, MoroccoUniv Cadi Ayyad, Dept Math & Informat, Fac Polydisciplinaire, Safi, Morocco
Riahi, H.
[2
]
机构:
[1] Univ Cadi Ayyad, Dept Math & Informat, Fac Polydisciplinaire, Safi, Morocco
[2] Univ Cadi Ayyad, Lab Ibn Al Bannaa, Fac Sci Semlalia, Dept Math, Safi, Morocco
Using a slightly modified concept of Bregman functions, we suggest a Bregman proximal interior point method (BPIPA for brevity) for solving equilibrium problems with pseudomonotone bifunctions over a convex and non-polyhedral set. We establish the weak convergence of our algorithm for pseudomonotone bifunctions satisfying a cutting plane property (the so-called pseudomonotonicity*) extending henceforth the result by N. Langenberg [41] [Pseudomonotone operators and the Bregman Proximal Point Algorithm, J. Glob. Optim. 47 (2010), 537-555] in finite dimensional Euclidian spaces to real-valued bifunctions in infinite dimensional Hilbert spaces. Our algorithm is of inexact type in the sense that exact solutions of subproblems are not needed, instead we propose a summability criterion of errors vectors to conclude the required convergence. Examples of bifunctions satisfying the assumptions of our algorithm are finally discussed in the context of quasiconvex programming and hemivariational inequalities as well as elliptic partial differential equations applicable to physics and economy.
引用
收藏
页码:681 / 710
页数:30
相关论文
共 56 条
[1]
Ait Mansour M., 2002, J INEQUAL PURE APPL, V3
[2]
Ait Mansour M., 2003, COMMUN APPL ANAL, V7, P369