Radon Transform on Sobolev Spaces

被引:5
作者
Sharafutdinov, V. A. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
Radon transform; Sobolev spaces; Reshetnyak formula;
D O I
10.1134/S0037446621030198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Radon transform R maps a function f on R-n to the family of the integrals of f over all hyperplanes. The classical Reshetnyak formula (also called the Plancherel formula for the Radon transform) states that parallel to f parallel to L-2(R-n) = parallel to Rf parallel to(H(n-1)/2(n-1)/2(Sn-1 x R),) where parallel to.parallel to H(n- 1)/2(n-1)/2(Sn-1 x R) is some special norm. The formula extends the Radon transform to the bijective Hilbert space isometry R : L-2(R-n) -> H-(n-1)/2,e((n-1)/2)(Sn-1 x R). Given reals r, s, and t > - n/2, we introduce the Sobolev type spaces H-t((r,s)) (R-n) and H-(r,s)(t,e) (Sn-1 x R) and prove the version of the Reshetnyak formula: parallel to f parallel to((r,s))(Ht) (R-n) = parallel to Rf parallel to(Ht+(n-1)/2(r,(s+n- 1)/2)(Sn-1 x R)). The formula extends the Radon transform to the bijective Hilbert space isometry R : H-t((r,s)) (R-n) -> Ht+(n-1)/2,(e(r,s+(n-1)/2)) (Sn-1 x R). If r >= 0 and s >= 0 are integers then H-0,e((r,s)) (Sn-1 x R) consists of the even functions phi(xi, p) with square integrable derivatives of order <= r with respect to xi and order <= s with respect to p.
引用
收藏
页码:560 / 580
页数:21
相关论文
共 12 条
[1]  
[Anonymous], 1989, Scattering Theory
[2]  
Blokhintsev DI., 1964, Quantum Mechanics, DOI DOI 10.1007/978-94-010-9711-6
[3]  
Gel'fand I. M., 1966, GEN FUNCTIONS
[4]  
Gelfand I., 1960, SOVIET MATH DOKL, V1, P1369
[5]  
Helgason S., 2013, The radon transform, V2nd ed, DOI [10.1007/978-1-4757-1463-0, DOI 10.1007/978-1-4757-1463-0]
[6]  
JOHN F, 1955, PLANE WAVES SPHERICA
[7]  
LUDWIG D, 1966, COMMUN PUR APPL MATH, V19, P49
[8]  
Mikhailova TY., 1998, REPRESENTATIONS ROTA
[9]  
Radon J., 1917, BER VERH K SACHS GES, V69, P262, DOI DOI 10.1109/TMI.1986.4307775
[10]   The Reshetnyak formula and Natterer stability estimates in tensor tomography [J].
Sharafutdinov, Vladimir A. .
INVERSE PROBLEMS, 2017, 33 (02)