On potentially Kr1,r2,....rm-graphic sequencesi

被引:0
作者
Yin, Jian-Hua [1 ]
Chen, Gang
机构
[1] Hainan Univ, Dept Appl Math, Coll Informat Sci & Technol, Haikou 570228, Hainan, Peoples R China
[2] Ningxia Univ, Dept Math, Ningxia 750021, Peoples R China
关键词
graph; degree sequence; potentially K-r1; (r2); ..(rm)-graphic sequence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For given a graph II, a graphic sequence pi = (d(1), d(2), . . . , d(n)) is said to be potentially H-graphic if there exists a realization of pi containing H as a subgraph. In this paper, we determine the smallest even integer sigma(K-1s,t,n) such that each n-term graphic sequence with term sum at least sigma(K-1s,t,n) is potentially K-1s,t-graphic, where n >= 3s+2t(2) +3t-3 and K-1(s),t is an r(1) x r(1) x (. . .) x r(s+1) complete s + 1-partite graph with r(1) = r(2) = (. . .) = r(s) = 1 and r(s+1) = t. Moreover, we also characterize the potentially K-r,K-s-graphic sequences without zero terms for r = 2, s = 3 and r = 2, s = 4, where K-r,K-s is an r x s complete bipartite graph.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 17 条
[1]  
CHEN G, UNPUB NOTE POTENTIAL
[2]  
Erdos P., 1961, Mat. Lapok, V11, P264
[3]  
ERDOS P, 1991, GRAPH THEORY COMBINA, V1, P439
[4]  
Eschen Elaine M., 2004, AUSTRALASIAN J COMBI, V29, P59
[5]  
Gould R., 1999, COMBINATORICS GRAPH, VI, P451
[6]  
Kleitman D. J., 1973, Discrete Mathematics, V6, P79, DOI 10.1016/0012-365X(73)90037-X
[7]  
LAI CH, 2001, AUSTRALASIAN J COMBI, V24, P123
[8]  
Li J.S, 2001, SE ASIAN B MATH, V25, P427
[9]   The Erdos-Jacobson-Lehel conjecture on potentially Pk-graphic sequence is true [J].
Li, JS ;
Song, ZX ;
Luo, R .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05) :510-520
[10]   An extremal problem on the potentially Pk-graphic sequences [J].
Li, JS ;
Song, ZX .
DISCRETE MATHEMATICS, 2000, 212 (03) :223-231