Interpreting mechanisms of prediction for skin cancer diagnosis using multi-task learning

被引:12
作者
Coppola, Davide [1 ]
Lee, Hwee Kuan [1 ]
Guan, Cuntai [2 ]
机构
[1] ASTAR, Bioinformat Inst, Singapore, Singapore
[2] Nanyang Technol Univ, SCSE, Singapore, Singapore
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
关键词
ABCD RULE; CLASSIFICATION; DERMATOSCOPY; NETWORKS;
D O I
10.1109/CVPRW50498.2020.00375
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the key issues in deep learning is the difficulty in the interpretation of mechanisms for the final predictions. Hence the real-world application of deep learning in skin cancer still proves limited, in spite of the solid performances achieved. We present a way to better interpret predictions on a skin lesion dataset by the use of a multi-task learning framework and a set of learnable gates. The model detects a set of clinically significant attributes in addition to the final diagnosis and learns the association between tasks by selecting which features to share among them. Conventional multi-task learning algorithms generally share all the features among tasks and lack a way of determining the amount of sharing between tasks. On the other hand, this method provides a simple way to inspect which features are being shared between tasks in the form of gates that can be learned in an end-to-end fashion. Experiments have been carried out on the publicly available Derm7pt dataset, which provides diagnosis information as well as the attributes needed for the well-known 7-point checklist method.
引用
收藏
页码:3162 / 3171
页数:10
相关论文
共 36 条
[1]   Gated-Dilated Networks for Lung Nodule Classification in CT Scans [J].
Al-Shabi, Mundher ;
Lee, Hwee Kuan ;
Tan, Maxine .
IEEE ACCESS, 2019, 7 :178827-178838
[2]  
Alzahrani S, 2019, EUR W VIS INF PROCES, P211, DOI [10.1109/euvip47703.2019.8946208, 10.1109/EUVIP47703.2019.8946208]
[3]  
[Anonymous], 2015, ACS SYM SER
[4]   Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions - Comparison of the ABCD rule of dermatoscopy and a new 7-Point checklist based on pattern analysis [J].
Argenziano, G ;
Fabbrocini, G ;
Carli, P ;
De Giorgi, V ;
Sammarco, E ;
Delfino, M .
ARCHIVES OF DERMATOLOGY, 1998, 134 (12) :1563-1570
[5]  
Argenziano G., 2000, DERMOSCOPY TUTORIAL, V1st
[6]  
Arrieta Alejandro Barredo, 2019, ARXIV191010045CS
[7]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[8]   Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology [J].
Carli, P ;
Quercioli, E ;
Sestini, S ;
Stante, M ;
Ricci, L ;
Brunasso, G ;
De Giorgi, V .
BRITISH JOURNAL OF DERMATOLOGY, 2003, 148 (05) :981-984
[9]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[10]  
Chen EZ, 2019, I S BIOMED IMAGING, P485, DOI [10.1109/isbi.2019.8759483, 10.1109/ISBI.2019.8759483]