On the Camassa-Holm equation and a direct method of solution - I. Bilinear form and solitary waves

被引:71
作者
Parker, A [1 ]
机构
[1] Newcastle Univ, Sch Mech & Syst Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2050期
关键词
Camassa-Holm equation; shallow water wave; bilinear transform; solitary wave; peakon; solitons;
D O I
10.1098/rspa.2004.1301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the last decade, a variety of techniques has been used to find exact solutions (both analytic and other) of the Camassa-Holm equation. The different approaches have met with varying measures of success in eliciting the important class of soliton solutions. In this, the first of two papers, we show how Hirota's bilinear transform method can be used to obtain analytic solutions of the Camassa-Holm equation. A bilinear form of the Camassa Holm equation is presented and used to derive the solitary-wave solution, which is examined in various parameter regimes. A limiting procedure is then used to recover the well-known non-analytic 'peakon' solution from the solitary, wave. The results reported here provide a basis for constructing explicitly the erstwhile elusive N-soliton solutions of the Camassa-Holm equation in a sequel paper.
引用
收藏
页码:2929 / 2957
页数:29
相关论文
共 51 条
[1]   ONE MORE EXAMPLE OF INELASTIC SOLITON INTERACTION [J].
ABDULLOEV, KO ;
BOGOLUBSKY, IL ;
MAKHANKOV, VG .
PHYSICS LETTERS A, 1976, 56 (06) :427-428
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
[Anonymous], 1997, DISCRETE CONT DYN-A, DOI 10.3934/dcds.1997.3.419
[4]   Acoustic scattering and the extended Korteweg-de Vries hierarchy [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :190-206
[5]   Multi-peakons and a theorem of Stieltjes [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
INVERSE PROBLEMS, 1999, 15 (01) :L1-L4
[6]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[7]   SOLITARY-WAVE INTERACTION [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
PHYSICS OF FLUIDS, 1980, 23 (03) :438-441
[8]   On second grade fluids with vanishing viscosity [J].
Busuioc, V .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12) :1241-1246
[9]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[10]   On the initial value problem for a completely integrable shallow water wave equation [J].
Camassa, R ;
Zenchuk, AI .
PHYSICS LETTERS A, 2001, 281 (01) :26-33