Strong global dimension of commutative rings and schemes

被引:2
作者
Buchweitz, Ragnar-Olaf [1 ]
Flenner, Hubert [2 ]
机构
[1] Univ Toronto Scarborough, Dept Comp & Math Sci, Toronto, ON M1C 1A4, Canada
[2] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Strong global dimension; Perfect complex; PIECEWISE HEREDITARY ALGEBRAS; SURFACES;
D O I
10.1016/j.jalgebra.2014.08.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The strong global dimension of a ring is the supremum of the length of perfect complexes that are indecomposable in the derived category. In this note we characterize the noetherian commutative rings that have finite strong global dimension. We also give a similar characterization for separated noetherian schemes. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 11 条
[1]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[2]  
Goodearl K.R., 1979, MONOGR STUD MATH, V4
[3]   The resolution property of algebraic surfaces [J].
Gross, Philipp .
COMPOSITIO MATHEMATICA, 2012, 148 (01) :209-226
[4]   A homological characterization of piecewise hereditary algebras [J].
Happel, Dieter ;
Zacharia, Dan .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (01) :177-185
[5]   Homological properties of piecewise hereditary algebras [J].
Happel, Dieter ;
Zacharia, Dan .
JOURNAL OF ALGEBRA, 2010, 323 (04) :1139-1154
[6]  
ILLUSIE L., 1971, LECT NOTES MATH, V225
[8]  
Roberts P., 1980, SEMIN MATH SUPER, V72
[9]  
Rotman J. J., 1979, PURE APPL MATH, V85
[10]   Existence of vector bundles and global resolutions for singular surfaces [J].
Schröer, S ;
Vezzosi, G .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :717-728