Risk estimation before progression to mild cognitive impairment and Alzheimer's disease: an AD resemblance atrophy index

被引:22
作者
Zhao, Lei [1 ]
Luo, Yishan [1 ]
Lew, Darson [1 ]
Liu, Wenyan [1 ]
Au, Lisa [2 ,3 ]
Mok, Vincent [2 ,3 ,4 ,5 ]
Shi, Lin [1 ,2 ,6 ]
机构
[1] BrainNow Res Inst, Shenzhen, Guangdong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Therese Pei Fong Chow Res Ctr Prevent Dementia, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Chow Yuk Ho Technol Ctr Innovat Med, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Lui Che Woo Inst Innovat Med, Shatin, Hong Kong, Peoples R China
[6] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Shatin, Hong Kong, Peoples R China
来源
AGING-US | 2019年 / 11卷 / 16期
关键词
atrophy index; Alzheimer's disease; biomarker; conversion; automated brain volumetry; BRAIN ATROPHY; BASE-LINE; MCI PATIENTS; MRI; PREDICTION; PATTERNS; CLASSIFICATION; DEMENTIA; CONVERSION; VALIDITY;
D O I
10.18632/aging.102184
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To realize an individual-level risk evaluation of progression of early Alzheimer's disease (AD), we applied an AD resemblance atrophy index (AD-RAI) to differentiate the subjects at risk of progression from normal subjects (NC) to mild cognitive impairment (MCI) and from MCI to AD. We included 183 subjects with a two-year follow-up: 50 NC stable (NCs), 23 NC-to-MCI converters (NCc), 50 MCI stable (MCIs), 35 MCI-to-AD converters (MCIc), 25 AD stable (ADs). ANCOVA analyses were used to identify baseline brain atrophy in converters compared with non-converters. To explore the relative merits of AD-RAI over individual regional volumetric measures in prediction of disease progression, we searched for the optimal cutoff for each measure in logistic regressions and plotted the longitudinal trajectories of these brain volumetric measures in converters and non-converters. Baseline AD-RAI performed the best in differentiating NCc from NCs (odds ratio 26.35, AUC 0.740) and MCIc from MCIs (odds ratio 8.91, AUC 0.771). The AD-RAI presented greater increase in the second year for NCc vs. NCs but not for MCIc vs. MCIs. Baseline AD-RAls were also associated with CSF-based and PET-based AD biomarkers. These results showed the potential of AD-RAI in early risk estimation before progression to MCI/AD at an individual-level.
引用
收藏
页码:6217 / 6236
页数:20
相关论文
共 39 条
  • [1] Standardization of hippocampus volumetry using automated brain structure volumetry tool for an initial Alzheimer's disease imaging biomarker
    Abrigo, Jill
    Shi, Lin
    Luo, Yishan
    Chen, Qianyun
    Chu, Winnie Chiu Wing
    Mok, Vincent Chung Tong
    [J]. ACTA RADIOLOGICA, 2019, 60 (06) : 769 - 776
  • [2] Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years
    Albert, Marilyn
    Zhu, Yuxin
    Moghekar, Abhay
    Mori, Susumu
    Miller, Michael I.
    Soldan, Anja
    Pettigrew, Corinne
    Selnes, Ola
    Li, Shanshan
    Wang, Mei-Cheng
    [J]. BRAIN, 2018, 141 : 877 - 887
  • [3] Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease across imaging databases
    Casanova, Ramon
    Barnard, Ryan T.
    Gaussoin, Sarah A.
    Saldana, Santiago
    Hayden, Kathleen M.
    Manson, JoAnn E.
    Wallace, Robert B.
    Rapp, Stephen R.
    Resnick, Susan M.
    Espeland, Mark A.
    Chen, Jiu-Chiuan
    [J]. NEUROIMAGE, 2018, 183 : 401 - 411
  • [4] Measurements of medial temporal lobe atrophy for prediction of Alzheimer's disease in subjects with mild cognitive impairment
    Clerx, Lies
    van Rossum, Ineke A.
    Burns, Leah
    Knol, Dirk L.
    Scheltens, Philip
    Verhey, Frans
    Aalten, Pauline
    Lapuerta, Pablo
    van de Pol, Laura
    van Schijndel, Ronald
    de Jong, Remko
    Barkhof, Frederik
    Wolz, Robin
    Rueckert, Daniel
    Bocchetta, Martina
    Tsolaki, Magdalini
    Nobili, Flavio
    Wahlund, Lars-Olaf
    Minthon, Lennart
    Froelich, Lutz
    Hampel, Harald
    Soininen, Hilkka
    Visser, Pieter Jelle
    [J]. NEUROBIOLOGY OF AGING, 2013, 34 (08) : 2003 - 2013
  • [5] Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    Cuingnet, Remi
    Gerardin, Emilie
    Tessieras, Jerome
    Auzias, Guillaume
    Lehericy, Stephane
    Habert, Marie-Odile
    Chupin, Marie
    Benali, Habib
    Colliot, Olivier
    [J]. NEUROIMAGE, 2011, 56 (02) : 766 - 781
  • [6] Longitudinal progression of Alzheimers-like patterns of atrophy in normal older adults: the SPARE-AD index
    Davatzikos, Christos
    Xu, Feng
    An, Yang
    Fan, Yong
    Resnick, Susan M.
    [J]. BRAIN, 2009, 132 : 2026 - 2035
  • [7] Use of hippocamal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people
    den Heijer, T
    Geerlings, MI
    Hoebeek, FE
    Hofman, A
    Koudstaal, PJ
    Breteler, MMB
    [J]. ARCHIVES OF GENERAL PSYCHIATRY, 2006, 63 (01) : 57 - 62
  • [8] A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline
    den Heijer, Tom
    van der Lijn, Fedde
    Koudstaal, Peter J.
    Hofman, Albert
    van der Lugt, Aad
    Krestin, Gabriel P.
    Niessen, Wiro J.
    Breteler, Monique M. B.
    [J]. BRAIN, 2010, 133 : 1163 - 1172
  • [9] MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD
    deToledo-Morrell, L
    Stoub, TR
    Bulgakova, M
    Wilson, RS
    Bennett, DA
    Leurgans, S
    Wuu, J
    Turner, DA
    [J]. NEUROBIOLOGY OF AGING, 2004, 25 (09) : 1197 - 1203
  • [10] Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults
    Dickerson, B. C.
    Stoub, T. R.
    Shah, R. C.
    Sperling, R. A.
    Killiany, R. J.
    Albert, M. S.
    Hyman, B. T.
    Blacker, D.
    deToledo-Morrell, L.
    [J]. NEUROLOGY, 2011, 76 (16) : 1395 - 1402