Electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries

被引:35
|
作者
Shim, Joongpyo [1 ]
Striebel, Kathryn A.
机构
[1] Kunsan Natl Univ, Sch Chem Engn & Mat Sci, Kunsan 573701, Chonbuk, South Korea
[2] Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
关键词
natural graphite; anode; thermal oxidation; lithium-ion battery; cycleability; irreversible capacity;
D O I
10.1016/j.jpowsour.2006.09.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Natural graphite, which is used as an anode material in lithium-ion batteries, is thermally treated to improve its cycleability and reduce irreversible reactions with the electrolyte. Natural graphite is treated in air at 550 degrees C. The weight loss increases when the thermal oxidation time is increased. The BET surface area of the graphite decreases with increasing weight loss. The cycleability and efficiency of the thermally oxidized natural graphite improves significantly. Thermal oxidation decreases the irreversible capacity for side-reactions with the electrolyte on the first cycle. By contrast, it does not change the reversible capacity and rate capability. The improvement in the cycleability after thermal oxidation may be due to the removal of imperfect sites on the graphite. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:862 / 867
页数:6
相关论文
共 50 条
  • [41] Effect of nickel coating on electrochemical performance of graphite anodes for lithium ion batteries
    I. Sandu
    T. Brousse
    D. M. Schleich
    Ionics, 2003, 9 : 329 - 335
  • [42] Unveiling the Interplay Between Silicon and Graphite in Composite Anodes for Lithium-Ion Batteries
    Sun, Kai
    Xiao, Xu
    Shang, Wenxu
    Fu, Kang
    Li, Xueyan
    Zhang, Zhuojun
    Gong, Lili
    Tan, Peng
    SMALL, 2024, 20 (48)
  • [43] Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes
    Kriegler, Johannes
    Hille, Lucas
    Stock, Sandro
    Kraft, Ludwig
    Hagemeister, Jan
    Habedank, Jan Bernd
    Jossen, Andreas
    Zaeh, Michael F.
    APPLIED ENERGY, 2021, 303
  • [44] Reversibility of graphite electrode of lithium electrochemical intercalation for the lithium-ion rechargeable batteries
    Su, Yuchang
    Xu, Zhongyu
    Yin, Zhimin
    Zhongnan Gongye Daxue Xuebao/Journal of Central South University of Technology, 2000, 31 (06): : 540 - 543
  • [45] Dimensional Stability of Nanosilicon/Graphite/Carbon Composite Anodes for Lithium-Ion Batteries
    Park, Yoon-Soo
    Kim, Jae-Youn
    Lee, Sung-Man
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (04) : A36 - A38
  • [46] Effect of nickel coating on electrochemical performance of graphite anodes for lithium ion batteries
    Sandu, I
    Brousse, T
    Schleich, DM
    IONICS, 2003, 9 (5-6) : 329 - 335
  • [47] Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries
    Ding, Xiaobo
    Huang, Qianhui
    Xiong, Xunhui
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
  • [48] Lithium-ion batteries based on carbon-silicon-graphite composite anodes
    Khomenko, Volodymyr G.
    Barsukov, Viacheslav Z.
    Doninger, Joseph E.
    Barsukov, Igor V.
    JOURNAL OF POWER SOURCES, 2007, 165 (02) : 598 - 608
  • [49] Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries
    Montanino, Maria
    Del Mauro, Anna De Girolamo
    Paoletti, Claudia
    Sico, Giuliano
    MEMBRANES, 2022, 12 (10)
  • [50] A Mapping of the Physical and Electrochemical Properties of Composite Lithium-Ion Batteries Anodes Made from Graphite, Sn, and Si
    Smrekar, Sacha
    Bracamonte, M. Victoria
    Primo, Emiliano N.
    Luque, Guillermina L.
    Thomas, Jorge
    Barraco, Daniel E.
    Leiva, Ezequiel
    BATTERIES & SUPERCAPS, 2020, 3 (11) : 1248 - 1256