Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode

被引:25
|
作者
Zhu, Chongjia [1 ]
Wu, Zhiqiu [1 ]
Xie, Jian [1 ,2 ]
Chen, Zhen [3 ]
Tu, Jian [3 ]
Cao, Gaoshao [2 ]
Zhao, Xinbing [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[3] LI FUN Technol Corp Ltd, Zhuzhou 412000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium manganese phosphate; Cathode; Solvothermal reaction; Lithium-ion battery; Electrochemical performance; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; MN; FE; PRECURSOR; GROWTH; CO;
D O I
10.1016/j.jmst.2018.04.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a potential substitute for LiFePO4, LiMnPO(4 )has attracted more and more attention due to its higher energy, showing potential application in electric vehicle (EV) or hybrid electric vehicle (HEV). In this work, solvothermal method was used to prepare nano-sized LiMnPO4, where ethylene glycol was used as solvent, and lithium acetate (LiAc), phosphoric acid (H3PO4) and manganese chloride (MnCl2) were used as precursors. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The electrochemical performance was evaluated by charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the molar ratio of LiAc:H3PO4:MnCl2 plays a critical role in directing the morphology of LiMnPO4. Large plates transform into irregular nanoparticles when the molar ratio changes from 2:1:1 to 6:1:1. After carbon coating, the product prepared from the 6:1:1 precursor could deliver discharge capacities of 156.9, 122.8, and 89.7 mAh g(-1) at 0.05C, 1C and 10C, respectively. The capacity retention can be maintained at 85.1% after 200 cycles at 1C rate for this product. (C) 2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:1544 / 1549
页数:6
相关论文
共 50 条
  • [31] Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique
    Cao, Yanbing
    Duan, Jianguo
    Hu, Guorong
    Jiang, Feng
    Peng, Zhongdong
    Du, Ke
    Guo, Hongwei
    ELECTROCHIMICA ACTA, 2013, 98 : 183 - 189
  • [32] Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries
    Guan, Peiyuan
    Zhou, Lu
    Yu, Zhenlu
    Sun, Yuandong
    Liu, Yunjian
    Wu, Feixiang
    Jiang, Yifeng
    Chu, Dewei
    JOURNAL OF ENERGY CHEMISTRY, 2020, 43 : 220 - 235
  • [33] A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance
    Wani, Tasaduk Ahmad
    Suresh, G.
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [34] Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery
    Wang, Fei
    Yang, Jun
    NuLi, Yanna
    Wang, Jiulin
    ELECTROCHIMICA ACTA, 2013, 103 : 96 - 102
  • [35] Effect of vanadium doping on electrochemical performance of LiMnPO4 for lithium-ion batteries
    Su, Lele
    Li, Xiaowei
    Ming, Hai
    Adkins, Jason
    Liu, Mangmang
    Zhou, Qun
    Zheng, Junwei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (03) : 755 - 762
  • [36] Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries
    Zhang, Longfei
    Qu, Qunting
    Zhang, Li
    Li, Jing
    Zheng, Honghe
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) : 711 - 719
  • [37] Facile synthesis of nanostructured LiMnPO4 as a high-performance cathode material with long cycle life and superior rate capability
    Liao, Longhuan
    Xie, Jian
    Zhang, Shichao
    Cao, Gaoshao
    Zhao, Xinbing
    RSC ADVANCES, 2015, 5 (121): : 99632 - 99639
  • [38] Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries
    Huihua Yi
    Chenglin Hu
    Xiangming He
    Hongyun Xu
    Ionics, 2015, 21 : 667 - 671
  • [39] Li0.995Nb0.005Mn0.85Fe0.15PO4/C as a high-performance cathode material for lithium-ion batteries
    Lv, Xiao-Yan
    Huang, Qiao-Ying
    Wu, Zhi
    Su, Jing
    Long, Yun-Fei
    Wen, Yan-Xuan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (05) : 1499 - 1507
  • [40] Solution combustion synthesis and electrochemical properties of yttrium-doped LiMnPO4/C cathode materials for lithium ion batteries
    El Khalfaouy, Redouan
    Turan, Servet
    Rodriguez, Miguel A.
    Dermenci, Kamil Burak
    Savaci, Umut
    Addaou, Abdellah
    Laajeb, Ali
    Lahsini, Ahmed
    JOURNAL OF RARE EARTHS, 2020, 38 (09) : 976 - 982