Affine Weyl group symmetries of Frobenius Painleve equations

被引:12
作者
Wang, Haifeng [1 ]
Li, Chuanzhong [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
affine Weyl group symmetry; Frobenius Painleve II equation; Frobenius Painleve IV equation; Hamilton system; similarity reduction; SYSTEMS; ALGEBRA; CHAINS;
D O I
10.1002/mma.6116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Frobenius Painleve IV equation and the corresponding Hamilton system, and we give the symmetric form of the Frobenius Painleve IV equation. Then, we construct the Lax pair of the Frobenius Painleve IV equation. Furthermore, we recall the Frobenius modified KP hierarchy and the Frobenius KP hierarchy by bilinear equations, then we show how to get Frobenius Painleve IV equation from the Frobenius modified KP hierarchy. In order to study the different aspects of the Frobenius Painleve IV equation, we give the similarity reduction and affine Weyl group symmetry of the equation. Similarly, we introduce a Frobenius Painleve II equation and show the connection between the Frobenius modified KP hierarchy and the Frobenius Painleve II equation.
引用
收藏
页码:3238 / 3252
页数:15
相关论文
共 27 条
[1]   NONLINEAR CHAINS AND PAINLEVE EQUATIONS [J].
ADLER, VE .
PHYSICA D, 1994, 73 (04) :335-351
[2]  
[Anonymous], 1993, Funkts. Anal. Prilozh.
[3]  
[Anonymous], 2010, LONDON MATH SOC MONO
[4]  
[Anonymous], 1998, Funkc. Ekvacioj
[5]  
Conte R., 2012, The Painleve Property: One Century Later
[6]  
Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
[7]  
Date E., 1982, Publ. Res. Inst. Math. Sci., V18, P1077, DOI [10.2977/prims/1195183297, DOI 10.2977/PRIMS/1195183297]
[8]  
Dickey LA, 2003, WORLD SCI
[9]   SUSY partners of the truncated oscillator, Painleve transcendents and Backlund transformations [J].
Fernandez C, D. J. ;
Morales-Salgado, V. S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (19)
[10]   Geometric aspects of Painleve equations [J].
Kajiwara, Kenji ;
Noumi, Masatoshi ;
Yamada, Yasuhiko .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (07)