Challenges of the Human Proteome Project: 10-Year Experience of the Russian Consortium

被引:7
作者
Archakov, Alexander I. [1 ]
Aseev, Alexander L. [2 ]
Bykov, Victor A. [3 ]
Grigoriev, Anatoly I. [4 ]
Govorun, Vadim M. [5 ]
Ilgisonis, Ekaterina V. [1 ]
Ivanov, Yuri D. [1 ]
Ivanov, Vadim T. [6 ]
Kiseleva, Olga I. [1 ]
Kopylov, Arthur T. [1 ]
Lisitsa, Andrey V. [1 ]
Mazurenko, Sergey N. [7 ]
Makarov, Alexander A. [8 ]
Naryzhny, Stanislav N. [1 ]
Pleshakova, Tatiana O. [1 ]
Ponomarenko, Elena A. [1 ]
Poverennaya, Ekaterina V. [1 ]
Pyatnitskii, Mikhail A. [1 ]
Sagdeev, Renad Z. [9 ]
Skryabin, Konstantin G. [10 ]
Zgoda, Victor G. [1 ]
机构
[1] Inst Biomed Chem, Moscow 119435, Russia
[2] Inst Semicond Phys, Novosibirsk 630090, Russia
[3] NT MDT, Moscow 124460, Russia
[4] Inst Med & Biol Problems, Moscow 123007, Russia
[5] Fed Res & Clin Ctr Phys Chem Med, Moscow 119435, Russia
[6] Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
[7] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia
[8] Engelhardt Inst Mol Biol, Moscow 119991, Russia
[9] Int Tomog Ctr, Novosibirsk 630090, Russia
[10] Fed Res Ctr Fundamentals Biotechnol, Moscow 119071, Russia
关键词
human proteome; mass-spectrometry; Chromosome-Centric Human Proteome Project (C-HPP); sensitivity; fractionation; missing proteins; atomic force microscopy; proteoforms; low-abundant proteins; ATOMIC-FORCE MICROSCOPY; MASS-SPECTROMETRY; MESSENGER-RNA; LIVER-TISSUE; DEPLETED PLASMA; TRANSCRIPTOME; SPECIFICITY; GENERATION; NANOWIRE; NUMBER;
D O I
10.1021/acs.jproteome.9b00358
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.
引用
收藏
页码:4206 / 4214
页数:9
相关论文
共 60 条
[1]   Global signatures of protein and mRNA expression levels [J].
Abreu, Raquel de Sousa ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Vogel, Christine .
MOLECULAR BIOSYSTEMS, 2009, 5 (12) :1512-1526
[2]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[3]  
Aebersold R, 2018, NAT CHEM BIOL, V14, P206, DOI [10.1038/NCHEMBIO.2576, 10.1038/nchembio.2576]
[4]  
Archakov A, 2012, EXPERT REV PROTEOMIC, V9, P667, DOI [10.1586/epr.12.54, 10.1586/EPR.12.54]
[5]   Gene-centric view on the human proteome project: The example of the Russian roadmap for chromosome 18 [J].
Archakov, Alexander ;
Aseev, Alexander ;
Bykov, Victor ;
Grigoriev, Anatoly ;
Govorun, Vadim ;
Ivanov, Vadim ;
Khlunov, Alexander ;
Lisitsa, Andrey ;
Mazurenko, Sergey ;
Makarov, Alexander A. ;
Ponomarenko, Elena ;
Sagdeev, Renad ;
Skryabin, Konstantin .
PROTEOMICS, 2011, 11 (10) :1853-1856
[6]   Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins [J].
Archakov, Alexander ;
Ivanov, Yurii ;
Lisitsa, Andrey ;
Zgoda, Victor .
PROTEOMICS, 2009, 9 (05) :1326-1343
[7]   AFM fishing nanotechnology is the way to reverse the Avogadro number in proteomics [J].
Archakov, Alexander Ivanovich ;
Ivanov, Yurii Dmitrievich ;
Lisitsa, Andrey Valerevich ;
Zgoda, Victor Gavrilovich .
PROTEOMICS, 2007, 7 (01) :4-9
[8]   Applications of Next-Generation Sequencing Technologies to Diagnostic Virology [J].
Barzon, Luisa ;
Lavezzo, Enrico ;
Militello, Valentina ;
Toppo, Stefano ;
Palu, Giorgio .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2011, 12 (11) :7861-7884
[9]  
Bukharina N. S., 2015, Biomeditsinskaya Khimiya, V61, P363, DOI 10.18097/PBMC20156103363
[10]   Translational contributions to tissue specificity in rhythmic and constitutive gene expression [J].
Castelo-Szekely, Violeta ;
Arpat, Alaaddin Bulak ;
Janich, Peggy ;
Gatfield, David .
GENOME BIOLOGY, 2017, 18