Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay

被引:14
作者
Yang, Gaoxiang [1 ]
Xu, Jian [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal patterns; Turing bifurcation; Spatiotemporal delay; Multiple scale method; Amplitude equations; PERIODIC TRAVELING-WAVES; PREDATOR-PREY MODEL; TURING INSTABILITY; SYSTEM; BIFURCATION; STABILITY;
D O I
10.1016/j.nonrwa.2014.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Employing the theories of Turing bifurcation in the partial differential equations, we investigate the dynamical behavior of a single species reaction-diffusion model with spatiotemporal delay. The linear stability and the conditions for the occurrence of Turing bifurcation in this model are obtained. Moreover, the amplitude equations which represent different spatiotemporal patterns are also obtained near the Turing bifurcation point by using multiple scale method. In Turing space, it is found that the spatiotemporal distributions of the density of this researched species have spots pattern and stripes pattern. Finally, some numerical simulations corresponding to the different spatiotemporal patterns are given to verify our theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 2003, Murray
[2]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[3]   AGGREGATION AND THE COMPETITIVE EXCLUSION-PRINCIPLE [J].
BRITTON, NF .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 136 (01) :57-66
[4]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[5]  
Chen S., 2012, INT J BIFURCAT CHAOS, V22
[6]   ANALYSIS OF SPATIAL STRUCTURE IN A PREDATOR-PREY MODEL WITH DELAY .2. NONLINEAR-THEORY [J].
CHOUDHURY, SR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (05) :1451-1467
[7]   TURING INSTABILITY IN COMPETITION MODELS WITH DELAY .1. LINEAR-THEORY [J].
CHOUDHURY, SR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (05) :1425-1450
[9]   Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation [J].
Gourley, SA ;
Chaplain, MAJ ;
Davidson, FA .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (02) :173-192
[10]  
Gourley SA, 1996, J MATH BIOL, V34, P297, DOI 10.1007/s002850050012