Mathematics and tensegrity

被引:125
作者
Connelly, R
Back, A
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Math, Instruct Comp Lab, Ithaca, NY 14853 USA
关键词
D O I
10.1511/1998.2.142
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Group and representation theory make it possible to form a complete catalogue of "strut-cable" constructions with prescibed symmetries.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 8 条
[1]  
CHUNG F, 1993, AM SCI, V81, P56
[2]   Second-order rigidity and prestress stability for tensegrity frameworks [J].
Connelly, R ;
Whiteley, W .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (03) :453-491
[3]   RIGIDITY AND ENERGY [J].
CONNELLY, R .
INVENTIONES MATHEMATICAE, 1982, 66 (01) :11-33
[4]  
Connelly R, 1995, Struct Topol, V21, P59
[5]  
HARTOG JP, 1949, STRENGTH MAT, P3
[6]  
LYUSTERNIK LA, 1956, CONVEX FIGURES POLYH
[7]  
*NEW YORK AC SCI, 1989, K SNELS NAT STRUCT
[8]  
Pugh A., 1976, INTRO TENSEGRITY, DOI DOI 10.1525/9780520338326