Deep Learning Improves Pancreatic Cancer Diagnosis Using RNA-Based Variants

被引:11
作者
Al-Fatlawi, Ali [1 ]
Malekian, Negin [1 ]
Garcia, Sebastian [2 ,3 ]
Henschel, Andreas [4 ]
Kim, Ilwook [1 ]
Dahl, Andreas [5 ]
Jahnke, Beatrix [2 ,3 ]
Bailey, Peter [6 ]
Bolz, Sarah Naomi [1 ]
Poetsch, Anna R. [1 ,7 ]
Mahler, Sandra [8 ]
Gruetzmann, Robert [6 ]
Pilarsky, Christian [6 ]
Schroeder, Michael [1 ]
机构
[1] Tech Univ Dresden, Ctr Mol & Cellular Bioengn, Biotechnol Ctr BIOTEC, Tatzberg 47-49, D-01307 Dresden, Germany
[2] Tech Univ Dresden, Univ Hosp, Dept Visceral Thorac & Vasc Surg, D-01307 Dresden, Germany
[3] Tech Univ Dresden, Fac Med Carl Gustav Carus, D-01307 Dresden, Germany
[4] Khalifa Univ Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
[5] Tech Univ Dresden, Ctr Mol & Cellular Bioengn, DRESDEN Concept Genome Ctr, D-01307 Dresden, Germany
[6] Univ Klinikum Erlangen, Dept Surg Res, Maximilianspl 2, D-91054 Erlangen, Germany
[7] Natl Ctr Tumor Dis NCT, D-01307 Dresden, Germany
[8] Univ Klinikum Dresden, Dept Med Oncol, D-01307 Dresden, Germany
关键词
pancreatic cancer; chronic pancreatitis; transcriptome-wide association study; deep learning; IMMUNE LANDSCAPE; CLINICAL UTILITY; ADENOCARCINOMA; ANTIGEN; CA-19-9; SUSCEPTIBILITY; EXPRESSION; MARKER; CELLS; SERUM;
D O I
10.3390/cancers13112654
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Blood samples from patients with pancreatic diseases have been analysed to identify predictive RNA-based variants. These variants are not subject to changes in the environment, as is the case for gene expression or metabolic. The variants served together with CA19-9 as input to deep learning for a cohort of 268 patients with pancreatic diseases. Of these patients, 183 patients had pancreatic cancer and 85 from chronic pancreatitis. Among others, we were able to define a set of variants, which were able to differentiate resected pancreatic cancer from chronic pancreatitis with an area under the curve of (AUC) of 96%. Due to the ease of our approach and the wide availability of the used method, it will have a broad impact on the clinical routine. Suspicious patients are only subjected to a blood draw of 2.5 mL blood, and the specimen can then be sent at room temperature to a specialised laboratory. For optimal pancreatic cancer treatment, early and accurate diagnosis is vital. Blood-derived biomarkers and genetic predispositions can contribute to early diagnosis, but they often have limited accuracy or applicability. Here, we seek to exploit the synergy between them by combining the biomarker CA19-9 with RNA-based variants. We use deep sequencing and deep learning to improve differentiating pancreatic cancer and chronic pancreatitis. We obtained samples of nucleated cells found in peripheral blood from 268 patients suffering from resectable, non-resectable pancreatic cancer, and chronic pancreatitis. We sequenced RNA with high coverage and obtained millions of variants. The high-quality variants served as input together with CA19-9 values to deep learning models. Our model achieved an area under the curve (AUC) of 96% in differentiating resectable cancer from pancreatitis using a test cohort. Moreover, we identified variants to estimate survival in resectable cancer. We show that the blood transcriptome harbours variants, which can substantially improve noninvasive clinical diagnosis.
引用
收藏
页数:17
相关论文
共 41 条
[1]  
Andrianifahanana M, 2001, CLIN CANCER RES, V7, P4033
[2]   The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal [J].
Ballehaninna, Umashankar K. ;
Chamberlain, Ronald S. .
JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2012, 3 (02) :105-119
[3]   Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Waldner, Maximilian ;
Obenauf, Anna C. ;
Angell, Helen ;
Fredriksen, Tessa ;
Lafontaine, Lucie ;
Berger, Anne ;
Bruneval, Patrick ;
Fridman, Wolf Herman ;
Becker, Christoph ;
Pages, Franck ;
Speicher, Michael R. ;
Trajanoski, Zlatko ;
Galon, Jerome .
IMMUNITY, 2013, 39 (04) :782-795
[4]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[5]   Estimation of time-dependent area under the ROC curve for long-term risk prediction [J].
Chambless, Lloyd E. ;
Diao, Guoqing .
STATISTICS IN MEDICINE, 2006, 25 (20) :3474-3486
[6]   Identification of genetic variants predictive of early onset pancreatic cancer through a population science analysis of functional genomic datasets [J].
Chen, Jinyun ;
Wu, Xifeng ;
Huang, Yujing ;
Chen, Wei ;
Brand, Randall E. ;
Killary, Ann M. ;
Sen, Subrata ;
Frazier, Marsha L. .
ONCOTARGET, 2016, 7 (35) :56480-56490
[7]   Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis [J].
Chen, Ru ;
Pan, Sheng ;
Cooke, Kelly ;
Moyes, Kara White ;
Bronner, Mary P. ;
Goodlett, David R. ;
Aebersold, Ruedi ;
Brentnall, Teresa A. .
PANCREAS, 2007, 34 (01) :70-79
[8]   Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer [J].
Childs, Erica J. ;
Mocci, Evelina ;
Campa, Daniele ;
Bracci, Paige M. ;
Gallinger, Steven ;
Goggins, Michael ;
Li, Donghui ;
Neale, Rachel E. ;
Olson, Sara H. ;
Scelo, Ghislaine ;
Amundadottir, Laufey T. ;
Bamlet, William R. ;
Bijlsma, Maarten F. ;
Blackford, Amanda ;
Borges, Michael ;
Brennan, Paul ;
Brenner, Hermann ;
Bueno-de-Mesquita, H. Bas ;
Canzian, Federico ;
Capurso, Gabriele ;
Cavestro, Giulia M. ;
Chaffee, Kari G. ;
Chanock, Stephen J. ;
Cleary, Sean P. ;
Cotterchio, Michelle ;
Foretova, Lenka ;
Fuchs, Charles ;
Funel, Niccola ;
Gazouli, Maria ;
Hassan, Manal ;
Herman, Joseph M. ;
Holcatova, Ivana ;
Holly, Elizabeth A. ;
Hoover, Robert N. ;
Hung, Rayjean J. ;
Janout, Vladimir ;
Key, Timothy J. ;
Kupcinskas, Juozas ;
Kurtz, Robert C. ;
Landi, Stefano ;
Lu, Lingeng ;
Malecka-Panas, Ewa ;
Mambrini, Andrea ;
Mohelnikova-Duchonova, Beatrice ;
Neoptolemos, John P. ;
Oberg, Ann L. ;
Orlow, Irene ;
Pasquali, Claudio ;
Pezzilli, Raffaele ;
Rizzato, Cosmeri .
NATURE GENETICS, 2015, 47 (08) :911-+
[9]   Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer [J].
Goonetilleke, K. S. ;
Siriwardena, A. K. .
EJSO, 2007, 33 (03) :266-270
[10]   Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients With Pancreatic Cancer [J].
Grant, Robert C. ;
Selander, Iris ;
Connor, Ashton A. ;
Selvarajah, Shamini ;
Borgida, Ayelet ;
Briollais, Laurent ;
Petersen, Gloria M. ;
Lerner-Ellis, Jordan ;
Holter, Spring ;
Gallinger, Steven .
GASTROENTEROLOGY, 2015, 148 (03) :556-564