Impulsive noise filtering using a Median Redescending M-Estimator

被引:4
|
作者
Mujica-Vargas, Dante [1 ]
Gallegos-Funes, Francisco J. [2 ]
de Jesus Rubio, Jose [3 ]
Pacheco, Jaime [3 ]
机构
[1] CENIDET, Dept Comp Sci, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Natl Polytech Inst Mexico, Mech & Elect Engn Higher Sch, Ciudad De Mexico, Mexico
[3] Inst Politecn Nacl, ESIME Azcapotzalco, Secc Estudios Posgrad & Invest, Ciudad De Mexico, Mexico
关键词
Salt and Pepper noise; noise suppression; grayscale images; Redescending M-Estimator; Median-Estimator; DIGITAL IMAGES; PEPPER NOISE; REMOVAL; SALT;
D O I
10.3233/IDA-170885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salt and Pepper noise removal is an important image preprocessing task, it has two simultaneous demands: the suppression of impulses and the preservation of edges. To address this problem in gray scale images, we propose an efficient method which consists of introducing a Redescending M-Estimator within of the Median-Estimator scheme. The Redescending M- Estimator controls the magnitude of the Salt or Pepper impulses and deletes them when it is necessary; the remaining pixels in the neighborhood are processed by the Median-Estimator in order to obtain an estimation of a noise free pixel. The proposed scheme is applied on the entire image using sliding windows of size 5 x 5; the local information obtained by this window is used to calculate the thresholds and the parameters that characterize the influence functions tested in the Redescending MEstimator. To improve the suppression ability of our proposal a pulse detector is used, it identifies when is necessary to submit each pixel to the denoising process. The effectiveness of our proposal is verified by quantitative and qualitative results.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 50 条
  • [1] Multi-core Median Redescending M-Estimator for Impulsive Denoising in Color Images
    Mujica-Vargas, Dante
    Rendon-Castro, Arturo
    Matuz-Cruz, Manuel
    Garcia-Aquino, Christian
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 261 - 271
  • [2] REDESCENDING M-ESTIMATOR FOR ROBUST REGRESSION
    Noor-Ul-Amin, Muhammad
    Asghar, Salah Ud Din
    Sanaullah, Aamir
    Shehzad, Muhammad Ahmad
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2018, 11 (02): : 69 - 80
  • [3] Ratio Estimators in the Presence of Outliers Using Redescending M-Estimator
    Muhammad Noor-ul-Amin
    Salah-Ud-Din Asghar
    Aamir Sanaullah
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 65 - 70
  • [4] Ratio Estimators in the Presence of Outliers Using Redescending M-Estimator
    Noor-ul-Amin, Muhammad
    Asghar, Salah-Ud-Din
    Sanaullah, Aamir
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) : 65 - 70
  • [5] A Redescending M-Estimator for Detection and Deletion of Outliers in Regression Analysis
    Anekwe, Stella Ebele
    Onyeagu, Sidney Iheanyi
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2021, 17 (04) : 997 - 1014
  • [6] A redescending M-estimator approach for outlier-resilient modeling
    Raza, Aamir
    Noor-ul-Amin, Muhammad
    Ayari-Akkari, Amel
    Nabi, Muhammad
    Aslam, Muhammad Usman
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [7] Insha's Redescending M-estimator for Robust Regression: A Comparative Study
    Ullah, Insha
    Qadir, Muhammad F.
    Ali, Asad
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2006, 2 (02) : 135 - 144
  • [8] Robust Low-Rank Tensor Recovery With Regularized Redescending M-Estimator
    Yang, Yuning
    Feng, Yunlong
    Suykens, Johan A. K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (09) : 1933 - 1946
  • [9] Depth-map super-resolution algorithm with redescending M-estimator constraints
    2016, Institute of Computing Technology (28):
  • [10] Robust Sparse Recovery in Impulsive Noise via M-Estimator and Non-Convex Regularization
    Gao, Le
    Bi, Dongjie
    Li, Xifeng
    Peng, Libiao
    Xu, Weijie
    Xie, Yongle
    IEEE ACCESS, 2019, 7 : 26941 - 26952