Let Cl1(1,3) and Cl2(1,3) be the subsets of elements of the Clifford algebra Cl(1,3) of ranks 1 and 2 respectively. Recently it was proved that the subset Cl2(p,q)+iCl1(p,q) of the complex Clifford algebra can be considered as a Lie algebra. In this paper we prove that for p=1, q=3 the Lie algebra Cl2(p,q)+iCl1(p,q) is isomorphic to the well known matrix Lie algebra sp(4,R) of the symplectic Lie group Sp(4,R). Also we define the so called symplectic group of Clifford algebra and prove that this Lie group is isomorphic to the symplectic matrix group Sp(4,R).